Teacher Outcomes

Beyond Bridging: Co-education of Pre-service and In-service Elementary Teachers in Science and Mathematics

This project will implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. The project is creating a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers.

Lead Organization(s): 
Award Number: 
1019860
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
Horizon Research, Inc.
Full Description: 

The University of Arizona is partnering with the Tucson Unified School District to implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. This vexing problem often arises when student teachers expect to implement reform-based pedagogies while their mentor teachers insist on traditional approaches. The project is creating a "third space," a professional community that includes 40 pre-service and 50 in-service teachers, university scientists and mathematicians, science and mathematics education faculty, and school district administrators. The third space is providing a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers. The project is being implemented in two low-income, culturally and linguistically diverse elementary schools with a comparison school used as a control.

The evaluation/research component is a qualitative study led by Horizon Research, Inc. The fundamental research question is whether the third space model establishes interpretive systems that foster enactment of inquiry-based and problem-solving teaching practices. Data collection will include all participants in the third space forum, but focuses on the pre-service and in-service teachers through written products and discussions of lesson design activities, videotapes of teaching by pre-service and in-service teachers, and analysis of comments made in a web-based forum. Instruments to be used are the Reform Teaching Observation Protocol (RTOP), the Experiences Patterns Explanations (EPE) framework, and the Inquiry-Application Instructional Model (I-AIM).

The main product of this project is the third space model and the research that supports its success. The model will be disseminated broadly and if replicated widely, it would represent a major improvement in the professional development of teachers in the areas of inquiry-based science and problem-solving mathematics.

Teachers Empowered to Advance Change in Mathematics (TEACH MATH): Preparing Pre K-8 Teachers to Connect Children's Mathematical Thinking and Community-Based Funds of Knowledge

This project will modify the teacher preparation program for preK-8 teachers. The program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge, and learn to encourage students' mathematical thinking. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

Lead Organization(s): 
Award Number: 
1228034
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
Research Institute for Studies in Education
Full Description: 

This research and development project will modify the teacher preparation program for preK-8 teachers at six universities located in different regions of the U.S. The new program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge in ways that will help them teach mathematics, and learn to encourage students' mathematical thinking. By integrating these important bodies of knowledge, pre-service teachers should be better prepared to teach mathematics to the variety of students in their classes. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

The project includes a study of how pre-service teachers learn to apply the knowledge they have gained in the program. The research team has planned a longitudinal collection of data that will track the pre-service teachers into their careers. Their goal is to document teachers' understandings of children's mathematical thinking and children's cultural funds of knowledge and to understand the relationship between teachers' understandings and the learning and disposition of preK-8 students. The study will be implemented at all six universities with staggered start dates allowing for analysis and revisions between cohorts.

These research and development efforts have the potential to impact preK-8 teacher preparation through (1) the development of modules that integrate several relevant proficiencies in mathematics teaching, and (2) the research that studies the impact of such a program on the mathematical learning and disposition of preK-8 students.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

Integrated Study of Natural Resources, Human Impact, and Environmental Policy: Making Complex Systems Accessible for Secondary Learners

This project explores the potential of "Agent-Based Models" to assist learners to acquire environmental science concepts targeted in forthcoming Advanced Placement test standards. The investigators frame the research in a simulated scenario where "green" infrastructure is integrated into urban environments, and they propose how to use a new user interface strategy ("Paper-to-Parameters") that promises unique approaches for understanding the spatial and scalar relationships between simulation elements.

Partner Organization(s): 
Award Number: 
1020065
Funding Period: 
Sun, 08/15/2010 to Tue, 07/31/2012
Full Description: 

This proposal explores the potential of "Agent-Based Models" to assist learners to acquire environmental science concepts targeted in forthcoming Advanced Placement test standards. It will also help learners acquire a better understanding of complex systems and to shift their attitudes towards the use of scientific models. The investigators frame the research in a simulated scenario where "green" infrastructure is integrated into urban environments, and they propose how to use a new user interface strategy ("Paper-to-Parameters") that promises unique approaches for understanding the spatial and scalar relationships between simulation elements. The project will develop an assessment tool to obtain a picture of prior understandings and attitudes held by learners in different populations (high school, undergraduate, and graduate students and experts); it will conduct an exploratory trial of the Agent-Based learning intervention to investigate the impacts on cognition and attitudes of undergraduate students; and will investigate how selected user interface features facilitate specific spatial and scalar understandings.

The assessment will allow the investigators to describe understanding and attitudes across populations with differing levels of expertise and will provide a baseline for measuring the real impact of the intervention and informing the design of future interventions. The exploratory lesson and targeted experiments will explore the connection between specific features of the computer-based tool and changes in learner understanding of selected AP Environmental Science and complex system concepts, and in learner attitudes towards models.

Virtual Learning Communities: An Online Professional Development Resource for STEM Teachers

This project will design, develop, and test a virtual learning community (VLC) to enhance the ability of first- and fourth-grade teachers to provide mathematics education. The goal is to produce a prototype of a VLC for first- and fourth-grade Everyday Mathematics teachers that integrates three primary elements: (a) learning objects rooted in practice, such as lesson video, (b) community-building tools offered by the internet, and (c) focused content that drives teachers' professional learning in mathematics.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1020083
Funding Period: 
Thu, 07/15/2010 to Sun, 06/30/2013
Project Evaluator: 
none
Full Description: 

Researchers and developers at the University of Chicago are conducting an exploratory project to design, develop, and test a virtual learning community (VLC) to enhance the ability of first- and fourth-grade teachers to provide mathematics education. The project deploys cyberlearning technologies to allow teachers to interact with one another and with experts across the U.S. The goal is to produce a prototype of a VLC for first- and fourth-grade Everyday Mathematics teachers that integrates three primary elements: (a) learning objects rooted in practice, such as lesson video, (b) community-building tools offered by the internet, and (c) focused content that drives teachers' professional learning in mathematics.

This VLC is developed during two engineering cycles in which the project team engages teachers as central partners. The quality and utility of the resultant VLC is tested against the anticipated outcomes of (a) sustained participation by teachers in the VLC and (b) changes in teachers' "professional vision" in mathematics education. Sustained participation is tracked using web analytics and user logs. Changes in professional vision are measured by on-line assessment tools used by approximately 150 teachers.

The VLC develops learning objects; community-building tools; and focused content. The VLC will be launched during the third year of the project by way of the Everyday Mathematics website, which has over 6000 visitors per day, and the University of Chicago School Mathematics Project newsletter, which has a circulation of 40,000. The potential audience is quite large since Everyday Mathematics is used in 185,000 classrooms.

CAREER: Supporting Middle School Students' Construction of Evidence-Based Arguments

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0953046
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Project Evaluator: 
David Williams
Full Description: 

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. The question chosen for study by a new researcher at Utah State University is: How can argumentation ability be enhanced among middle school students? This study involves 325 middle school students in 12 class sections from 3 school districts in Utah and Idaho. First, students in middle school science classrooms will be introduced to problem-based learning (PBL) units that allow them to investigate ill-structured science problems. These activities provide students with something about which to argue: something that they have explored personally and with which they have grappled. Next, they will construct arguments using a powerful computer technology, the Connection Log, developed by the PI. The Connection Log provides a scaffold for building arguments, allowing each student to write about his/her reasoning and compare it to arguments built by peers. The study investigates how the Connection Log improves the quality of students' arguments. It also explores whether students are able to transfer what they have learned to new situations that call for argumentation.

This study is set in 6th and 7th grade science classrooms with students of diverse SES, ethnicity, and achievement levels. The Connection Log software supports middle school students with written prompts on a computer screen that take students through the construction of an argument. The system allows students to share their arguments with other members of their PBL group. The first generation version of the Connection Log asks students to:

1. define the problem, or state the problem in their own words

2. determine needed information, or decide on evidence they need to find to solve the problem

3. find and organize needed information

4. develop a claim, or make an assertion stating a possible problem solution

5. link evidence to claim, linking specific, relevant data to assertions

The model will be optimized through a process of design-based research. The study uses a mixed methods research design employing argument evaluation tests, video, interviews, database information, debate ratings, and a mental models measure, to evaluate student progress.

This study is important because research has shown that students do not automatically come to school prepared to create evidence-based arguments. Middle school students face three major challenges in argumentation: adequately representing the central problem of the unit; determining and obtaining the most relevant evidence; and synthesizing gathered information to construct a sound argument. Argumentation ability is crucial to STEM performance and to access to STEM careers. Without the ability to formulate arguments based upon evidence, middle school students are likely to be left out of the STEM pipeline, avoid STEM careers, and have less ability to critically evaluate and understand scientific findings as citizens. By testing and refining the Connection Log, the project has the potential for scaling up for use in science classrooms (and beyond) throughout the United States.

Iterative Model Building (IMB): A Program for Training Quality Teachers and Measuring Teacher Quality

This project aims to improve professional development programs for pre-service teachers (PSTs) as a way to improve student learning in mathematics and science. PSTs engage in a series of teaching cycles, and then engage in lesson study groups to develop, teach, and analyze a whole-class lesson. The cycle is completed by reexamining students' knowledge in teaching experiments with pairs of students. These teaching cycles are called Iterative Model Building (IMB).

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0732143
Funding Period: 
Wed, 08/15/2007 to Tue, 07/31/2012
Project Evaluator: 
Center for Evaluation and Education Policy

Data Games: Tools and Materials for Learning Data Modeling (Collaborative Research: Finzer)

The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.

Project Email: 
Lead Organization(s): 
Award Number: 
0918735
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
James Hammerman
Full Description: 

Students playing computer games generate large quantities of rich, interesting, highly variable data that mostly evaporate when the game ends. What if in a classroom setting, data from games students played remained accessible to them for analysis? In software and curriculum materials developed by the Data Games project at UMass Amherst and KCP Technologies, data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and try their strategies in another round of the game.

 

The video games are embedded in an online data analysis learning environment that is based on desktop software tools Fathom® Dynamic Data and Tinkerplots® Dynamic Data Exploration, widely used in grades 5–8 and 8–14 respectively. The game data appear in graphs and tables in real time, allowing several cycles of strategy improvement in a short time. The games are designed so that these cycles improve understanding of specific data modeling and/or mathematics concepts.

 

The research strand of the Data Games project focuses on students’ creation of data representations that model a real-world context. Findings from this research have been incorporated into the design of the data structures in the software.

Interactive Ink Inscriptions in K-12 (INK-12) (Collaborative Research: Rubin)

This exploratory project seeks to understand the role that a network of tablet computers may play in elementary and middle school math and science classrooms. The project uses classroom observations, student interviews, teacher interviews, and student artifacts to identify the advantages and disadvantages of these resources, to understand what challenges and benefits they offer to teachers, and to offer recommendations for future hardware, software, and curriculum development.

Partner Organization(s): 
Award Number: 
0822055
Funding Period: 
Mon, 09/01/2008 to Tue, 08/31/2010
Project Evaluator: 
David Reider
Full Description: 

Pages

Subscribe to Teacher Outcomes