Teacher Outcomes

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists (Collaborative Research: Lewis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906588
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Davis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906565
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Rigelman)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to develop teacher leaders, improve teachers' instructional practices, and increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906682
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
RMC Research
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Validity Evidence for Measurement in Mathematics Education (V-M2ED) (Collaborative Research: Bostic)

The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1920621
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

As education has shifted more towards data-driven policy and research initiatives in the last several decades, data for policy-related aspects are often expected to be more quantitative in nature.  This has led to the increase in use of more quantitative measures in STEM education, including mathematics education. Unfortunately, evidence regarding the validity and reliability of mathematics education measures is lacking. Furthermore, the evidence for validity for quantitative tools and measures is not conceptualized or defined consistently by researchers in the field. The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education. Drawing on the results of the synthesis study, the researchers will design, curate, and disseminate a repository of quantitative assessments used in mathematics education teaching and research. The researchers will also create materials and online training for a variety of scholars and practitioners to use the repository.

The team will address two main research questions: 1) How might validity evidence related to quantitative assessments used in mathematics education research be categorized and described? and 2) What validity evidence exists for quantitative instruments used in mathematics education scholarship since 2000? Researchers will use a cross-comparative methodology which involves conducting a literature search and then analyzing and categorizing features of instruments. The research team will examine cases (i.e., assessments described in manuscripts) in which quantitative instruments have been used, alongside specific features such as the construct measured, evidence related to sources of validity, and study sample. The team will then design, develop, and deploy a free online digital repository for the categorization of instruments and describe their associated validity evidence.

Developing and Investigating Unscripted Mathematics Videos

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

Lead Organization(s): 
Award Number: 
1907782
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

This project responds to the recent internet phenomenon of widespread accessibility to online instructional videos, which offer many benefits, such as student control of the pace of learning. However, these videos primarily focus on a single speaker working through procedural problems and providing an explanation. While the immense reach of free online instructional videos is potentially transformative, this potential can only be attained if access transcends physical availability to also include entry into important disciplinary understandings and practices, and only if the instructional method pushes past what would be considered outdated pedagogy in any other setting than a digital one. This project will use an alternative model for online videos, originally developed for a previous exploratory project, to develop 6 video units that feature the unscripted dialogue of pairs of students. The project team will use the filming and post-production processes established during the previous grant to create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level. They will also conduct 8 research studies to investigate the promise of these unscripted dialogic videos with a diverse population to better understand the vicarious learning process, which refers to learning from video- or audio-taped presentations of other people learning. Additionally, the project team will provide broader access to the project videos and support a variety of users, by: (a) subtitling the videos and checking math task statements for linguistic accessibility; (b) representing diversity of race, ethnicity, and language in both the pool of students who appear in the videos and the research study participants; (c) providing teachers with an array of resources including focus questions to pose in class with each video, printable task worksheets, specific ways to support dialogue about the videos, and alignment of the video content with Common Core mathematics standards and practices; and (d) modernizing the project website and making it functional across a variety of platforms.

The videos created for this project will feature pairs of students (called the talent), highlighting their unscripted dialogue, authentic confusion, and conceptual resources. Each video unit will consist of 7 video lessons (each split into 4-5 short video episodes) meant to be viewed in succession to support conceptual development over time. The project will build upon emerging evidence from the exploratory grant that as students engage with videos that feature peers grappling with complex mathematics, they can enter a quasi-collaborative relationship with the on-screen talent to learn complex conceptual content and engage in authentic mathematical practices. The research focuses on the questions: 1. What can diverse populations of vicarious learners learn mathematically from dialogic videos, and how do the vicarious learners orient to the talent in the videos? 2. What is the nature of vicarious learners' evolving ways of reasoning as they engage with multiple dialogic video lessons over time and what processes are involved in vicarious learning? and, 3. What instructional practices encourage a classroom community to adopt productive ways of reasoning from dialogic videos? To address the first question, the project team will conduct two Learning Outcomes and Orientation Studies, in which they analyze students' learning outcomes and survey responses after they have learned from one of the video units in a classroom setting. Before administering an assessment to a classroom of students, they will first conduct an exploratory Interpretation Study for each unit, in which they link the mathematical interpretations that VLs generate from viewing the project videos with their performance on an assessment instrument. Both types of studies will be conducted twice, once for each of two video units - Exponential Functions and Meaning and Use of Algebraic Symbols. For the second research question, the project team will identify a learning trajectory associated with each of four video units. These two learning trajectories will inform the instructional planning for the classroom studies by identifying what meaningful appropriation can occur, as well as conceptual challenges for VLs. By delivering learning trajectories for two additional units, the project can contribute to vicarious learning theory by identifying commonalities in learning processes evident across the four studies. For the final research question, the project team will investigate how instructors can support students with the instrumental genesis process, which occurs through a process called instrumental orchestration, as they teach the two videos on exponential functions and algebraic symbols.

Strengthening Middle School Mathematical Argumentation through Teacher Coaching: Bridging from Professional Development to Classroom Practice

This project is a professional learning experience for middle school teachers to support them in developing five mathematical practices in their teaching focused on mathematical argumentation - creating mathematical arguments, using appropriate tools strategically, looking for and make use of structure, attending to precision, and looking for and express regularity in repeated reasoning.

Lead Organization(s): 
Award Number: 
1907561
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The Bridging Professional Development project is a professional learning experience for middle school teachers to support them in developing five mathematical practices in their teaching focused on mathematical argumentation. These practices are: create mathematical arguments, use appropriate tools strategically, look for and make use of structure, attend to precision, and look for and express regularity in repeated reasoning. Mathematics argumentation is an important component of complex problem solving and supporting students in understanding the why, not just the how, of mathematics. The professional development intervention consists of summer workshop focused on approximations of teaching practice, and coaching during the school year. The coaching component includes face-to-face coaching and a video-based tool that allows teachers and coaches to engage with records of classroom interactions. The project expands the successful Bridging professional development work by adding four additional mathematical practices that relate to argumentation, adding the coaching component, collecting data on students' equitable participation in classroom discussions, and piloting an impact study to determine whether the professional development that includes coaching leads to improved mathematics teaching and learning, and the mechanisms by which that hypothesized improvement occurs.

The Bridging series of professional development projects are built on a theoretical framework that begins with providing teachers with opportunities to engage in meaningful mathematics teaching practices, identify teaching moves that would support students in learning those practices, and to try out those moves with other teachers in approximations of teaching practice. The outcomes of such activity are increased teacher knowledge that can be mobilized in the planning and enactment of lessons, and improved pedagogical moves in the classroom. This in turn is likely to lead to increased student engagement and mathematics achievement. In this award, Bridging adds cycles of coaching to support teachers in translating lessons learned from approximations of practice to the work in their classrooms with students, and to provide ongoing school-year support for implementation. The research components of the project focus on understanding the practice of the coaches, including the design and deployment of coaching training and coaching sessions, as it relates to teachers' abilities to foster stronger student engagement in mathematical practices. The project will recruit 25 teachers at middle schools with experienced mathematics coaches to participate, with teachers directed to select a single focus class for data collection. Case studies will be pursued with six teachers and three coaches that represent diverse backgrounds, experiences, and levels of prior knowledge. Video records of coaching training and sessions will be collected and analyzed, along with lessons plans and teacher-enacted lessons, to determine the influence of the coaching on practice. The study will also investigate the ways in which teacher engagement in the professional developments leads to changes in teacher practice and student outcomes. Video records of practice, written lesson plans, student work, and interviews will be collected and analyzed to determine the impact on teaching practice. Teachers' mathematical knowledge for teaching will also be assessed at key points in the project to assess teacher learning, and student standardized assessment scores and performance assessment outcomes will be collected to assess student learning.

Developing the Science Comprehensive Online Learning Platform for Rural School Science Teacher Development

This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1908937
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Rural school districts in the US face unique challenges: isolation in small farm communities, significant distances between communities, minimal funding, and low teacher salaries. They also serve high numbers of diverse and low-income students, who deserve equitable access to high quality science learning opportunities. Effective online professional development (PD) is needed for teachers working in isolated rural communities where high quality face-to-face PD may be economically impractical for districts to offer. This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS). The online learning platform will be modeled after successful face-to-face PD features: (1) job-embedded - learning occurs within the context of teachers' classroom instruction, (2) collaborative - teachers share experiences in implementing new practices, and (3) content-specific - teachers develop disciplinary content and instructional practices that support students' understanding of science. Once developed and refined, the online PD platform can be used broadly across other contexts and content areas.

Over a three year period, this project will develop, evaluate, and then compare an online PD platform for supporting rural science teachers in implementing the Towards High School Biology (THSB) curriculum with a traditional face-to-face PD. In year one, the research team will iteratively develop the online platform and adapt the already developed face-to-face PD for implementing THSB to an online format. Utilizing Curator, a social learning platform developed by HT2Labs, project researchers will embed teacher learning that is situated with their own classroom contexts, is asynchronously and synchronously collaborative, and is focused on the THSB curriculum content. In years two and three, forty eight rural middle-school science educators will be recruited from southwest Kansas and randomly assigned to online PD (treatment) or face-to-face PD (comparison). Using mixed methodology, the project will examine if differences exist between the conditions in regards to teacher content knowledge, teacher self-efficacy in using new practices, teacher classroom practices, and student learning outcomes. It is hypothesized that there should be no differences between conditions in fostering successful implementation of evidence-based science practices and student outcomes, demonstrating the success of an online modality to support deep conceptual change in teachers' instructional practices. Furthermore, lessons learned in developing and investigating a science comprehensive online learning platform can inform application to other disciplinary content (e.g., physics, chemistry, Earth and space sciences) and across other grade level and school contexts.

 

Invigorating Statistics Teacher Education Through Professional Online Learning (InSTEP)

This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.

Project Email: 
Award Number: 
1908760
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Implementing meaningful statistics education in middle and high schools has been a persistent challenge in the United States. Statistics and data science are critical domains for STEM careers and the general data literacy of the citizenry. This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms. The project will also evaluate a model of professional development that integrates personalized online learning and microcredentialing (earning small-scale certifications) to better understand its effectiveness in supporting teacher learning. The project will draw from previous work to assemble online modules that engage teachers in doing high-quality statistics and data science tasks, the analysis of video of teachers' and students' work with those tasks, learning a pedagogical framework for teachers to implement the tasks, and exploring guidelines for identifying and developing high-quality statistics and data science tasks. The project will study teacher learning through the use of these modules, and the pathways that teachers choose through them to understand the effectiveness of the model.

The project builds on previous work by the investigators to develop research-based teacher professional development modules that support learning about statistics and statistics education in grades 6-12. Materials currently developed include a series of microcredentials with design features consistent with research on effective teacher professional development. They include opportunities for teachers to engage with statistics content appropriate to the target grade levels they teach, active learning opportunities that engage them with teachers in similar contexts, and a coherent focus that builds on the knowledge and experience teachers bring to the table. The project will take place in iterative phases, beginning with focus groups of middle and high school teachers and district leaders based on first drafts of the materials. This will be followed by cognitive interviews with teachers who engage in the microcredential ecosystem which will inform modifications to the system. Following this phase, cohorts of teachers (25 in the first cohort, 75 in the second) will participate in scaffolded professional development engagement with the materials, and will be assessed with respect to changes in their knowledge and practice. The project will assess changes in teacher knowledge using reliable and valid measures of statistics knowledge and practice. Data will be collected from the online platform regarding teacher engagement and usage to better understand usage and pathways through the materials. The professional learning platform will be made available as a free and open online source at the close of the project.

Alternative video text
Alternative video text: 

Pages

Subscribe to Teacher Outcomes