Teacher Outcomes

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Measuring the Effectiveness of Middle School STEM Innovation and Engineering Design Curricula

Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills.

Award Number: 
2101441
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Inclusion of engineering in the Next Generation Science Standards has led to increased opportunities for K-12 students to learn engineering related concepts and skills, and learn about engineering career paths. However, a persistent challenge is the lack of high-quality, research-based engineering curricular resources that align with science and math education standards. Further, the opportunities for K-12 students to also learn about manufacturing and how manufacturing is related to engineering, math, and science are limited. Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This DRK-12 impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula in approximately 29 middle schools, targeting 29 engineering teachers and approximately 5,000 students across middle grades in Georgia. This impact research study will determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education. It is a critical part of a larger effort to move the STEM-ID curricula, developed with NSF support, from the research lab to large-scale practice in schools.

To facilitate large-scale implementation, the project will transfer all curriculum and teacher support materials to an online dissemination site, develop just-in-time teacher support materials to embed within the curriculum, create an online professional development platform, and conduct professional learning in multiple areas of the state. The project team will then assess the transferability of the STEM-ID curricula and identify teacher outcomes that affect the implementation. They will also examine the generalizability of the curriculum by measuring student outcomes in STEM academic achievement and on social-emotional scales. The project’s research questions consider 1) contextual factors that influence scaling; 2) the fidelity of implementation, curriculum adaptations and sustainability; 3) the effects of professional development on teachers’ engineering self-efficacy and instructional practices; 4) the effect of participation on student academic performance in mathematics and science; 5) the effect of participation on student social-emotional outcomes; and 5) the relationship between the way STEM-ID is implemented and the student outcomes.  To examine the effects of STEM-ID on achievement and achievement growth, the investigators will use a multilevel growth model and mediation analysis to explore if the intervention’s effect on achievement was mediated by students’ engagement, academic self-efficacy, and/or interest in STEM. Additionally, drawing upon Century and Cassata’s Fidelity of Implementation framework (FOI), they will examine the array of factors that influence implementation of the STEM-ID curricula across diverse school settings.

Building Insights through Observation: Researching Arts-based Methods for Teaching and Learning with Data

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

Lead Organization(s): 
Award Number: 
2101310
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Innovations in data collection, infrastructure, and visualization play an important role in modern society. Large, complex datasets are accessible to and shared widely with the public. However, students need to learn how to interpret and reason about visualizations of scientific data. This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively. This project focuses on visual thinking skills that have been found to apply in both science and art: describing, wondering, recognizing uncertainty, and interpreting with evidence.

The project will conduct foundational research to understand the ways in which arts-based instructional methods and geospatial data visualization can be successfully applied by science teachers. The research will examine: (1) the ways in which arts-based instructional methods can be successfully applied by STEM teachers; (2) critical elements in the process of learning and applying these techniques to influence teachers’ content, pedagogical, and technological knowledge; and (3) for which transferable data literacy skills these approaches show most promise with children. This project will use a design-based research framework to develop data literacy teaching approaches in partnership with middle school teachers. The research process will include data about teachers’ development and students’ learning about data literacy. Data to be collected include qualitative and quantitative information from teachers and students.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Donovan)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Award Number: 
2100864
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Duncan)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100876
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Wedow)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100959
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Linn)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Partner Organization(s): 
Award Number: 
2101669
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Pages

Subscribe to Teacher Outcomes