Projects

09/01/2010

This project will investigate how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all.

09/01/2010

In response to the increased use of formative assessment practices in California's PK-12 mathematics classrooms, this project will investigate what formative assessments are in use, how practitioners and students are utilizing these assessments, and how they impact performance on summative state assessments. The main outcome of this study will be a set of research-informed and field-tested conclusions, recommendations, guidelines, and tools for the development and use of new or improved PK-12 mathematics formative assessments.

09/01/2010

This project investigated the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use every day. The enactment with OpenSim (an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics) also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.

09/01/2010

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

09/01/2010

This project is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum.

08/15/2010

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.

08/15/2010

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

08/01/2010

This project will explore how new mobile and web-based technologies can support content-rich nomadic inquiry; that is, science inquiry that takes place on-the-go, across integrated K-12 formal and informal settings. Students will begin the inquiry process in the classroom using curricular activities and the Zydeco web software developed in the project to help define goals and questions and to design data collection strategies and categories for use on a field trip to an informal setting.

07/01/2010

This project is developing and testing a set of 12 curriculum modules designed to engage high school students and their teachers in the process of applying computational concepts and methods to problem solving in a variety of scientific contexts. The project perspective is that computational thinking can be usefully thought of as a specialized form of mathematical modeling.

10/01/2009

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

10/01/2009

This project is a four-year, longitudinal, mixed-methods study of 12 school districts’ implementation of elementary mathematics instructional materials. It investigates the relationships among the district level of coherence of implementation, the school level of support for implementation, the school level of use of materials, and the effects on student outcomes.

09/15/2009

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.

09/15/2009

This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.

09/01/2009

This project is developing and evaluating effectiveness of 15 - 20 short computer mediated animations and games that are designed to: (1) increase students' conceptual understanding in especially problematic topics of middle grades mathematics; and (2) increase students' mathematics process skills with a focus on capabilities to think and talk mathematically.

09/01/2009

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

09/01/2009

This project is developing software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.

09/01/2009

This research and development project provides resources for ninth-grade mathematics students and teachers by developing, piloting, and field-testing intervention modules designed as supplementary materials for Algebra 1 classes (e.g., double-period algebra). Rather than developing isolated skills and reviewing particular topics, these materials aim to foster the development of mathematical habits of mind—in particular, the algebraic habit of abstracting from calculations, a key unifying idea in the transition from arithmetic to algebra.

09/01/2009

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

09/01/2009

This project is carrying out a research and development initiative to increase the success rates of our most at-risk high school students—ninth-grade students enrolled in algebra classes but significantly underprepared for high school mathematics. It will also result in new understandings about effective approaches for teaching mathematics to struggling students and about effective ways for implementing these approaches at scale, particularly in urban school districts.

09/01/2009

This project is exploring how curricula and assessment using dynamic, interactive scientific visualizations of complex phenomena can ensure that all students learn significant science content. Dynamic visualizations provide an alternative pathway for students to understand science concepts, which can be exploited to increase the accessibility of a range of important science concepts. Computer technologies offer unprecedented opportunities to design curricula and assessments using visual technologies and to explore them in research, teaching, and learning.

09/01/2009

This project is studying effects of linguistically sensitive science instructional materials by translating, enhancing, and evaluating culturally relevant and linguistically appropriate Collaborative Online Projects (originally written in Spanish) for middle school Spanish-speaking English Language Learners.

09/01/2009

This project investigates how high school students' understanding about design thinking compares to that of experienced practitioners and whether participation in a multiyear sequence of courses focused on engineering correlates with changes in design thinking. The project builds upon the Standards for Technological Literacy and courses developed at the University of Colorado and the University of Maryland, Baltimore County.

09/01/2009

The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.

09/01/2009

To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically.  As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program.

09/01/2009

This project contributes to the emerging knowledge base for reform-minded middle school STEM instructional materials development through the development, field-testing, and evaluation of a prototype instructional materials module specifically designed to stimulate and sustain urban-based students’ interest in STEM. The module includes guided inquiry-oriented activities thematically linked by the standards-aligned concept of energy transfer, which highlight the fundamental processes and integrative nature of 21st century scientific investigation.