Projects

08/15/2007

This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.

01/01/2008

This project creates materials for grades 5-8 that address and assess STEM concepts through a robotics curriculum. The curriculum addresses STEM standards through such documents as the NCTM Focal Points and the Atlas of Science Literacy. Students can use the TekBot robotics platform in three problem-based ways: building, moving, and programming. The intent is to scale up to a cyber-infrastructure that supports the national distribution and implementation of the curriculum.

08/01/2008

This project develops and researches the academic potential of a hybrid instructional model that infuses computer simulations, modeling, and educational gaming into middle school technology education programs. These prototypical materials use 3-D simulations and educational gaming to support students’ learning of STEM content and skills through developing solutions to design challenges.

09/15/2010

This project leverages curricular module development to design, develop, and test new cyberlearning modules that integrate multiple (circulation, respiration, and digestion) systems of the human body. The project aims to deepen science content knowledge, science inquiry skills, and model-based reasoning skills for high school biology students. The project will use simulations showing how individual systems function, how they work together, and how the integration of all three creates a dynamic and reactive biological system.

08/15/2007

This grant examines the changes teachers and students go through in their first year of implementing a New Technology High School project-based curriculum for ninth graders in two high schools. This first year of implementation is part of a phased-in implementation for subsequent grades. The NTHS approach calls for moving from more traditional approaches to mathematics and science education to project-based curricula that posits mathematics and science in the context of real-world issues and problems.

10/01/2016

This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

09/01/2007

This project employs sensing technologies to help transform students' physical actions during play into a set of symbolic (computer) representations in a physics simulation and to engage the children in a developmentally appropriate and powerful form of scientific modeling. The students are in grades K–1 at UCLA's elementary school, and the intervention is based on the existing content unit on Force and Motion.

08/01/2013

This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.

08/15/2008

This project investigates the potential of online role-playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role-playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions.

09/01/2008

This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.

 

10/01/2009

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

09/01/2014

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

09/15/2009

The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.

09/01/2008

This project is focusing on the redesign of popular commercial video games to support students’ understanding of Newtonian mechanics. In support of this goal, SURGE develops and implements design principles for game-based learning environments, integrating research on conceptual change, cognitive processing-based design, and socio-cognitive scripting. These enhanced games bridge the gap between student learning in non-formal game environments and the formalized knowledge structures learned in school by leveraging and integrating the strengths of each.

05/01/2006

This project studies mathematics professional development leaders' understandings and practices associated with developing mathematically rich learning environments. It investigates this issue by considering: How can leaders cultivate professional development environments in which teachers have a greater opportunity to grapple with and deeply understand mathematics? The project studies how explicit attention to the cultivation of sociomathematical norms influences leaders' understanding of the process of creating mathematically rich environments and the impacts on their practices.

09/15/2007

This project has two goals:

1) to discover methods that can efficiently obtain information about the effects of high school programs on eventual college success. Methods we are considering include obtaining transcripts from post-secondary institutions, surveying high school graduates, and obtaining information from the National Student Clearinghouse.

2) to explore how students who studied Contemporary Mathematics in Context (Core Plus) or the Integrated Mathematics Program (IMP) fare in post secondary institutions.

09/01/2014

This project will develop a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

10/01/2016

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

09/15/2008

This project anticipates the needs of learners in 10 years by developing and testing two learning simulations that are immersive, interactive, and participatory and use augmented reality in the outdoors. Students work in teams to investigate phenomena and solve problems in a gaming environment using wireless handheld GPS units. Using a design-based, mixed-methods approach, the researchers examine the relationships among augmented reality, learning in science, socio-emotional outcomes, and the demographic characteristics of rural, underserved students.

09/15/2008

In this project, a video and audio network links elementary school teachers with researchers and educators at Purdue to form a community of practice dedicated to implementing engineering education at the elementary grades. The research plan includes identifying the attributes of face-to-face and cyber-enabled teacher professional development and community building that can transform teachers into master users and designers of engineering education for elementary learners.

09/01/2007

The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.

09/01/2013

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.

08/15/2011

This effectiveness study focuses on the scale-up of a model of curricular and teacher professional development intervention aimed at improving science achievement of all students, especially English language learners (ELLs). The model consists of three basic components: (a) inquiry-oriented science curriculum, (b) teacher professional development for science instruction with these students, and (c) school resources for science instruction.

08/15/2007

Project M2 is producing and disseminating curriculum materials in geometry and measurement for students in grades K-2. This builds on success of the M3 U.S. Department of Education curriculum grant for students in Grades 3-5. (www.projectm3.org). Project M2 units are advanced units for all students designed using research-based practices in mathematics, early childhood, and gifted education. Curricular materials focus on promising discourse and hands-on inquiry of rich problem-situations.  

08/15/2008

The purpose of Project Delta is two-fold: (1) to extend an existing library of 17 interacting CD-ROM digital learning environments on numbers and operations by adding an algebra strand, and (2) to evaluate the impact of the new algebra materials on teacher development. Each of the digital environments features classroom sessions that allow for exploration of a mathematics topic, children learning over time, and teachers? instructional techniques.