Projects

09/01/2011

This project will develop and test a cyberlearning professional-development model that builds on the successful Curriculum Customization Service model implemented in Denver with EarthComm. The cyberlearning system is tested with the Project Based Inquiry Science (PBIS) curriculum - a proven comprehensive middle school science curriculum. The cyberlearning system is evaluated for scalability, affordability, flexibility, and effectiveness for changing teacher practice and student learning.

08/15/2011

This effectiveness study focuses on the scale-up of a model of curricular and teacher professional development intervention aimed at improving science achievement of all students, especially English language learners (ELLs). The model consists of three basic components: (a) inquiry-oriented science curriculum, (b) teacher professional development for science instruction with these students, and (c) school resources for science instruction.

08/15/2011

The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).

08/15/2011

This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.

08/01/2011

This project will develop, test, and refine a curriculum supplement (a hands-on technology) that (1) promotes childrens' understanding of number (counting, comparing, and ordering) and fair sharing (equipartitioning); (2) uses interactive media on an emerging handheld platform (touch screen tablets), integrating new multi-touch activities with existing hands-on activities; (3) enhances opportunities for learning with interactive media through shared use with adult guides and peers; and (4) provides professional and technical support materials for preschool educators.

07/15/2011

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs  

07/01/2011

This project designs, develops and tests a digital gaming environment for high school students that fosters and measures science learning within alternate reality games about saving Earth's ecosystems. Players work together to solve scientific challenges using a broad range of tools including a centralized web-based gaming site and social networking tools, along with handheld smart-phones, and an avatar-based massively multiplayer online environment. The game requires players to contribute to a scientific knowledge building community.

07/01/2011

This project is investigating the learning that can take place when elementary school students are directly involved in the collection, sense-making, and analysis of real, personally-meaningful data sets. The hypotheses of this work are that by organizing elementary statistics instruction around the study of physical activities, students will have greater personal engagement in data analysis processes and that students will also develop more robust understandings of statistical ideas.

07/01/2011

This project will develop STEM spatial thinking skills of middle school learners by equipping teachers with earth science investigations and support materials. This project will design, develop, and test curriculum materials that use Web Geospatial Information Systems that includes advanced visualization and geospatial analysis capabilities. The project will analyze how educative curriculum materials can prepare teachers to implement Web-based geospatial science pedagogical approaches to teaching, and document the impacts on student learning.

03/01/2011

This conference's primary goal is to discuss issues and recommend actions regarding assessment design and production that arise in an environment of Common Core State Standards (CCSS). Participants will include representatives from the governing states as well as from the leadership teams of the assessment consortia along with experts in curriculum development, standards implementation and assessment.

10/01/2010

The Lynch School of Education and the Urban Ecology Institute at Boston College are partnering with the Center for Applied Special Technology (CAST) to develop, test, evaluate and disseminate a year-long set of urban ecology course materials for use in high school-level capstone science courses. The standards-based materials emphasize locally-relevant field studies and incorporate principles of Universal Design for Learning and Educative Curriculum.

09/15/2010

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

09/15/2010

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

09/15/2010

This project will engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. This will result in a set of publicly reviewed, consensus reports that will guide collaborative efforts and broaden awareness of the acute need for geographic literacy and geographic science education.

09/15/2010

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

09/01/2010

This synthesis project is a systematic review of experimental research evaluating programs and practices in elementary science. The systematic review addresses all areas of science in the elementary grades. The review uses an adaptation of best-evidence synthesis previously applied to elementary and secondary mathematics and reading, and includes experimental and quasi-experimental research on the outcomes of alternative approaches to elementary science.

09/01/2010

This project is initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds.

09/01/2010

This project will develop a mathematics course for the fourth year of high school. The new course is being designed for students who will enter post-secondary education and will major in programs not requiring Calculus. The new course includes mathematics from a problem-solving or applications perspective, and serves as a bridge to college mathematics and statistics. Unit topics include functions, modeling, algebraic strategies, binomial distributions, and information processing.

09/01/2010

This project transforms an already-useful curriculum to reach a wider population of students and teachers. The curriculum effectively builds on a base of core science and math concepts to bring important current science to high school, using a case-based approach that incorporates authentic scientific inquiry. The Biocomplexity and the Habitable Planet curriculum is designed to provide material for a year-long capstone course in ecology and environmental science, or two individual modules for semester-long electives.

09/01/2010

This project will investigate how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all.

09/01/2010

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

09/01/2010

This project is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum.

09/01/2010

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.

09/01/2010

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers and inscriptions in 4th and 5th grade math and science, as well as models for teacher education and use.

08/15/2010

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.