Projects

09/15/2025

This project addresses a crucial need in K-12 science teacher education to respond to local school district needs for high-quality science teaching and the role of teacher education programs to develop programs that provide prospective teachers the best opportunity for success as science teachers. Specifically, the project aims to advance science teacher education by applying a pragmatic, iterative approach to developing teacher education program resources and tools that will support the implementation of evidence-based STEM teaching and learning practices in K-12 science classrooms. The project will identify evidence-based STEM teaching and learning practices through a systematic review of K-12 STEM education research and resources. Rather than generate new evidence, the project leverages the evidence that already exists to support educators in adapting and sustaining existing high-quality practices that have already demonstrated positive impacts on students' STEM learning.

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Tomorrow's domestic STEM workforce demands that students bring the ability to explain real-world phenomena and solve problems collaboratively. In many school districts, a significant gap persists between this ambitious vision and the realities of current instruction. One promising approach to bridge this gap is the use of high-quality instructional materials (HQIM), which have been shown to improve science teaching and learning. However, school systems often face serious challenges in selecting, adopting, and implementing these materials in ways that lead to consistent implementation across classrooms and lasting change. This project will establish a research-practice partnership between the University of Colorado Boulder and the Weld RE-4 School District in Colorado to better understand and address these challenges. The project will generate new understandings that support the translation of research on how curriculum can improve teaching and learning into practice for a whole school district, and yield insights into how school districts navigate organizational dynamics and competing priorities during curriculum adoption.

08/01/2025

The rapid onset of AI, and generative AI tools such as LLMs, amplify the need for AI literacies, including concepts, practices and ethics, for K-12 schools. Some AI literacy resources, such as AI4K12 and AI4ALL, have emerged, but it may be challenging for schools, particularly those in small districts, to navigate these resources. Furthermore, researchers need further guidance on how to support schools for AI literacy. These challenges for schools and researchers include how to coordinate planning across teachers, school leaders and researchers, how to implement across grade levels, classrooms, and content areas; how to provide training and preparation time to support lesson design and implementation; and how to support teachers in their own AI literacy. To address these needs, district leaders and teachers from Forest Park School District and researchers from the University of Illinois Chicago will engage in a one-year research practice partnership development to build a long-term RPP, co-design an AI literacy curriculum, and support professional development to implement the curriculum.

11/01/2024

To successfully understand and address complex and important questions in the field of environmental science, many kinds of communities’ knowledge about their local environment need to be engaged. This one-year partnership development project involves a collaboration to design an approach that would yield opportunities for K-12 students to learn about environmental science in ways that honor both traditional STEM knowledge and Native ways of knowing among the Pomo community in California.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

With recent advances in artificial intelligence (AI), the United States needs to develop a diverse workforce with strong computational skills and the knowledge and capability to work with AI. Recent studies have raised questions about the extent to which youth are aware of AI and its application in industries of the future that may limit their interest in pursuing learning that lead toward careers in these industries. To address this challenge, learning trajectories (LTs) will be developed and researched for AI concepts that are challenging for middle and high school students. The project will design and pilot test learning activities and assessments targeting these concepts based on the LTs, offer teacher professional development on the LTs and related activities, and research the effectiveness of the LT-based activities when implemented by teachers during the regular school day.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

As the nation tackles the challenges of energy transition, K-12 education must prepare a future STEM workforce that can not only apply STEM skills but also address reasoning through complex sociotechnical problems involving social justice. Aligned with the principles of socially transformative engineering and focused on students of color, this project involves the design and implementation of a novel STEM education curriculum that will support the development of secondary students’ abilities to reason through ambiguous and ethical challenges through design projects and to transfer these competencies to everyday life and future workplaces.

09/15/2024

The United States faces the critical need to prepare students and the future workforce for advances in Artificial Intelligence (AI). This project will develop curriculum that will engage middle-school students in learning science and basic AI concepts and in developing related career interests.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

09/01/2024

This project will support a conference series, including an in-person gathering and virtual follow-up meetings, that will bring together teachers, researchers, education leaders, and instructional material designers to build a shared understanding of how to integrate the use of high-quality instructional materials with the benefits of localizing these materials to better address students’ contexts and backgrounds. By fostering dialogue, sharing models, and setting priorities for future research and design, the project seeks to build knowledge about inclusive, effective, and culturally responsive approaches to science instruction that will advance equitable science education in K–12 classrooms.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

09/01/2024

Science education integrates the study of and practices from the Next Generation Science Standards (NGSS). At the fundamental level, the pedagogy involves teaching and learning that emphasizes the use of scientific inquiry and the engineering design process to develop students’ problem-solving, critical thinking, and collaboration skills. Unfortunately, funding and professional development for teachers, which is essential to assure successful implementation of science lessons to increase the potential for student achievement, is lacking.

Therefore, this NSF-funded science-education research project explored the development of a model that deepens the existing partnerships among grass-roots, non-profit community education organizations, K-12 public schools, and local university partners. Together, they worked collaboratively to develop a model where teachers could work together with community partners to implement high-quality, place-based, NGSS-aligned science learning opportunities that actively engage students in their classrooms during the school day.

This research project has led to the development of a full PreK-12 DRK proposal for high-quality professional development for teachers, using the newly developed Teacher-Plus-Community Partners (T+CP) model, with the goals of increasing science efficacy for teachers and impacting student achievement in science.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Young children thrive when strong relationships exist between their home and school environments. Early home and school experiences support the development of mathematical skills. Often, schools and teachers struggle to establish these strong relationships; therefore, Math Partners will work with teachers and teaching assistants in classroom design teams to help teachers establish healthy, positive relationships with families that center families’ knowledge and experiences in the context of mathematics.