Achievement/Growth

INFEWS/T4: The INFEWS-ER: a Virtual Resource Center Enabling Graduate Innovations at the Nexus of Food, Energy, and Water Systems

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience. The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students through a virtual resource center to help develop systematic processes for interdisciplinary thinking about large societal problems, especially those at the nexus of food, energy, and water.

Award Number: 
1639340
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience, thereby facilitating the generation of human capital who can address grand challenges at the nexus of food, energy, and water. The INFEWS-ER will provide educational resources (ER) targeting innovations at the nexus of FEW by combining the fundamental sciences of food, energy, and water with the skills and knowledge of interdisciplinary problem solving and the latest computational modeling and analysis tools and data. These individuals will be capable of analyzing scenarios at the scale of nations, continents, and the globe. The INFEWS-ER will offer certificate programs where FEW Graduate Scholars can demonstrate their capabilities in interdisciplinary thinking, Big Data, and computational modeling and analysis, thereby receiving a credential demonstrating their level of achievement. Further, The INFEWS-ER will offer a faculty fellowship program to incentivize a network of academics that will provide a scaffolded learning environment for graduates, effectively creating a hub for INFEWS research, education, and training.

The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students (who will become future faculty, practitioners, and policy makers) through a virtual resource center that will be accessible beyond the project team and project timeframe. Students will develop systematic processes for interdisciplinary thinking. They will be in the best possible position to target large societal problems, especially those at the nexus of food, energy, and water. New, interdisciplinary solutions will emerge, solutions that are sensitive to a wider array of constraints and ideals. Those solutions will reflect the best possible integration of technological, socio-economic, and socio-political constructs. Project impacts include educational and workforce development of the next generation of academics, multi-institution collaboration, and enhanced infrastructure for transdisciplinary research and education. The INFEWS-ER also has the potential to influence the way interdisciplinary research and education is implemented in the future through the archival dissemination of not only learning modules, but also the evaluations and lessons learned from the implementation of the center.

Development of the Electronic Test of Early Numeracy

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.

Partner Organization(s): 
Award Number: 
1621470
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish, focused on number and operations. The assessment will incorporate a learning trajectory that describes students' development of the understanding of number. The electronic assessment will allow for the test to adapt to students' responses and incorporate games to increase children's engagement with the tasks. These features take advantage of the electronic format. The achievement test will be designed to be efficient, user-friendly, affordable, and accessible for a variety of learning environments and a broad age range (3 to 8 years old). The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The e-TEN will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The items will be designed using domain-based learning trajectories that describe students' development of understanding of the topics. The test will be designed with some key characteristics. First, it will be semi-adaptive over six-month age spans. Second, it will have an electronic format that allows for uniform implementation and an efficient, user-friendly administration. The test will also be accessible to Spanish speakers using an inclusive assessment model. Finally, the game-based aspect should increase children's engagement and present more meaningful questions. The user-friendly aspect includes simplifying the assessment process compared to other tests of numeracy in early-childhood. The first phase of the development will test a preliminary version of the e-TEN to test its functionality and feasibility. The second phase will focus on norming of the items, reliability and validity. Reliability will be assessed using Item Response Theory methods and test-retest reliability measures. Validity will be examined using criterion-prediction validity and construct validity. The final phase of the work will include creating a Spanish version of the test including collecting data from bilingual children using both versions of the e-TEN.

Longitudinal Learning of Viable Argument in Mathematics for Adolescents

This project builds on a prior study that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. The project will extend the use of the argumentation intervention into all eighth grade content areas, with a specific focus on students' learning of reasoning and proof, and contribute to understanding how students' learning about mathematical practices that can help them learn mathematics better.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621438
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The project will examine learning in eighth grade mathematics with a specific focus on students' learning of reasoning and proof. The intervention builds on a prior study in algebra that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. This project will extend the use of the argumentation intervention into all eighth grade content areas. The investigators will also address support for teachers in the form of teacher materials that link the argumentation content with mathematics standards and state-wide assessments, and a learning progression to engage students in proving tasks. The project will use assessments of mathematics learning and additional data from teachers and students to understand the impact of the argumentation intervention on teachers and students. The project contributes to understanding how students can learn about mathematical practices, such as proving, that can help them learn mathematics better. A significant contribution will be the definition of aspects of proving and descriptions of student outcomes that can be used to measure how well students have achieved these components of proving. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is also supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.

The project suggests twelve conceptual pillars that are combined with classroom processes and assessable outcomes to examine the use of argumentation practices in the teaching of eighth grade mathematics content. The investigation of classroom support for argumentation includes research questions that focus on improvement on state-level assessments, students' ability to construct mathematical arguments, and the conceptual progression that supports students' understanding of argumentation and proof. In addition, the study will examine teachers' role in argumentation in the classroom and their perception of potential challenges for classroom implementation. The study will use an experimental design to examine an intervention for mathematical reasoning and proof in eighth grade. The project includes a treatment group of teachers that will participate in professional development including a summer institute followed by instructional coaching over a two year period.

Algebra Project Mathematics Content and Pedagogy Initiative

This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.

Award Number: 
1749483
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Algebra continues to serve as a gatekeeper and potential barrier for high school students. The Algebra Project Mathematics Content and Pedagogy Initiative (APMCPI) will scale up, implement and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework. The APMCPI project team is comprised of four HBCUs (Virginia State University, Dillard University, Xavier University, Lincoln University), the Southern Initiative Algebra Project (SIAP), and four school districts that are closely aligned with partner universities. The purpose of the Algebra Project is to improve performance and participation in mathematics by members of students in distressed school districts, particularly those with a large population of low-income students from underserved populations including African American and Hispanics. The project will provide professional development and implement the Algebra Project in four districts and study the impact on student learning. The research results will inform the nation's learning how to improve mathematics achievement for all children, particularly those in distressed inner-city school districts.

The study builds on a prior pilot project with a 74% increase in students who passed the state exam. In the early stages of this project, teachers in four districts closely associated with the four universities will receive Algebra Project professional development in Summer Teacher Institutes with ongoing support during the academic year, including a community development plan. The professional development is designed to help teachers combine mathematical problem solving with context-rich lessons, which both strengthen and integrate teachers' understanding of key concepts in mathematics so that they better engage their students. The project also will focus on helping teachers establish a framework for mathematically substantive, conceptually-rich and experientially-grounded conversations with students. The first year of the study will begin a longitudinal quasi-experimental, explanatory, mixed-method design. Over the course of the project, researchers will follow cohorts who are in grade-levels 5 through 12 in Year 1 to allow analyses across crucial transition periods - grades 5 to 6; grades 8 to 9; and grades 12 to college/workforce. Student and teacher data will be collected in September of Project Year 1, and in May of each project year, providing five data points for each student and teacher participant. Student data will include student attitude, belief, anxiety, and relationship to mathematics and science, in addition to student learning outcome measures. Teacher data will include content knowledge, attitudes and beliefs, and practices. Qualitative data will provide information on the implementation in both the experimental and control conditions. Analysis will include hierarchical linear modeling and multivariate analysis of covariance.

This project was previously funded under award #1621416.

InquirySpace 2: Broadening Access to Integrated Science Practices

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621301
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics courses. The project addresses the urgent national priority to improve science education as envisioned in the Next Generation Science Standards (NGSS) by focusing less on learning facts and equations and instead providing students with the time, skills, and resources to experience the conduct of science and what it means to be a scientist. This project builds on prior work that created a sequence of physics activities that significantly improved students' abilities to undertake data-based experiments and led to productive independent investigations. The goal of the InquirySpace project is to improve this physics sequence, extend the approach to biology and chemistry, and adapt the materials to the needs of diverse students by integrating tailored formative feedback in real time. The result will be student and teacher materials that any school can use to allow students to experience the excitement and essence of scientific investigations as an integral part of science instruction. The project plans to create and iteratively revise learning materials and technologies, and will be tested in 48 diverse classroom settings. The educational impact of the project's approach will be compared with that of business-as-usual approaches used by teachers to investigate to what extent it empowers students to undertake self-directed experiments. To facilitate the widest possible use of the project, a complete set of materials, software, teacher professional development resources, and curriculum design documents will be available online at the project website, an online teacher professional development course, and teacher community sites. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research. These features will include (1) educational games to teach data analysis and interpretation skills needed in the approach, (2) reduced dependence on reading and writing through the use of screencast instructions and reports, (3) increased reliance on graphical analysis that can make equations unnecessary, and (4) extensive use of formative feedback generated from student logs. The project uses an overarching framework called Parameter Space Reasoning (PSR) to scaffold students through a type of experimentation applicable to a very large class of experiments. PSR involves an integrated set of science practices related to a question that can be answered with a series of data collection runs for different values of independent variables. Data can be collected from sensors attached to the computer, analysis of videos, scientific databases, or computational models. A variety of visual analytic tools will be provided to reveal patterns in the graphs. Research will be conducted in three phases: design and development of technology-enhanced learning materials through design-based research, estimation of educational impact using a quasi-experimental design, and feasibility testing across diverse classroom settings. The project will use two analytical algorithms to diagnose students' learning of data analysis and interpretation practices so that teachers and students can modify their actions based on formative feedback in real time. These algorithms use computationally optimized calculations to model the growth of student thinking and investigation patterns and provide actionable information to teachers and students almost instantly. Because formative feedback can improve instruction in any field, this is a major development that has wide potential.

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Development and Empirical Recovery for a Learning Progression-Based Assessment of the Function Concept

The project will design an assessment based on learning progressions for the concept of function - a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses.

Lead Organization(s): 
Award Number: 
1621117
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The project will design an assessment based on learning progressions for the concept of function. A learning progression describes how students develop understanding of a topic over time. Function is a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design in this project is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses. The project will include accounting for the social and cultural experiences of the middle and high school students when creating assessment tasks. The resources developed should impact mathematics instruction (especially for algebra courses) by creating a learning progression which captures the range of student performance and appropriately places them at distinct levels of performance. The important contribution of the work is the development of a learning progression and related assessment tasks that account for the experiences of students often under-served in mathematics. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The learning progression development will begin by comparing and integrating existing learning progressions and current research on function learning. This project will develop an assessment of student knowledge of function based on learning progressions via empirical recovery (looking for the reconstruction of theoretical levels of the learning theory). Empirical recovery is the process through which data will be collected that reconstruct the various levels, stages, or sequences of said learning progression. The development of tasks and task models will include testing computer-delivered, interactive tasks and rubrics that can be used for human and automated scoring (depending on the task). Item response theory methods will be used to evaluate the assessment tasks' incorporation of the learning progression.


Project Videos

2020 STEM for All Video Showcase

Title: Practitioners’ Use of the Five-Step Curricular Process

Presenter(s): Edith Graf, Frank Davis, Cheryl Eames, Chad Milner, & Maisha Moses

2019 STEM for All Video Showcase

Title: Concept of Function Learning Progression

Presenter(s): Edith Graf, Frank Davis, Chad Milner, Maisha Moses, & Sarah Ohls


Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources (Collaborative Research: Phillips)

This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.

Lead Organization(s): 
Award Number: 
1620934
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The primary goal of this project is to help middle school students deepen and communicate their understanding of mathematics. The project will develop and test a digital platform for middle school mathematics classrooms. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class. The digital learning environment makes use of a problem-centered mathematics curriculum that evolved from extensive development, field-testing and evaluation, and is widely used in middle schools. The research will also contribute to understanding about the design and innovative use of digital resources and collaboration in classrooms as an increasing number of schools are drawing on these kinds of tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project will support students to collaboratively construct, manipulate, and interpret shared representations of mathematics using digital inscriptional resources. The research activities will significantly enhance our understanding of student learning in mathematics in three important ways. The project will report on how (1) evidence of student thinking is made visible through the use of digital inscriptional resources, (2) student inscriptions are documented, discussed, and manipulated in collaborative settings, and (3) students' conceptual growth of big mathematical ideas grows over time. An iterative design research process will incorporate four phases of development, testing and revision, and will be conducted to study student use of the digital learning space and related inscriptional resources. Data sources will include: classroom observations and artifacts, student and teacher interviews and surveys, student assessment data, and analytics from the digital platform. The process will include close collaboration with teachers to understand the implementation and create revisions to the resources.


Project Videos

2019 STEM for All Video Showcase

Title: Math Understanding in a Digital Collaborative Environment

Presenter(s): Alden Edson, Kristen Bieda, Chad Dorsey, Nathan Kimball, & Elizabeth Phillips


CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Pages

Subscribe to Achievement/Growth