Middle

A Three-Part Synchronous Online Model for Middle Grade Mathematics Teachers’ Professional Development

In this chapter, we describe a three-part fully online model for the professional development of middle school mathematics teachers. While the model could be applied to any context, we created it for rural mathematics teachers to provide them access to high-quality professional development and to demonstrate that we could move face-to-face experiences to an online context without losing interactional qualities or intellectual rigor. We describe the model and how we researched it.

Author/Presenter

Julie Amador

Cynthia Callard

Cynthia Carson

Ryan Gillespie

Jennifer Kruger

Stephanie Martin

Genie Foster 

Year
2021
Short Description

In this chapter, we describe a three-part fully online model for the professional development of middle school mathematics teachers. This chapter contributes to understanding how online contexts provide opportunities to collect and analyze data in ways that would be difficult to accomplish in face-to-face settings.

Rethinking Online Science Learning: Creating Virtual Research Experiences using Digitized Museum Specimens

Butcher, K. R., Larson, M., Lane, M., & Power, M. (2022). Rethinking Online Science Learning: Creating Virtual Research Experiences using Digitized Museum Specimens. Connected Science Learning, 4(2).

Author/Presenter

Kirsten R. Butcher

Madlyn Larson

McKenna Lane

Mitchell J. Power

Lead Organization(s)
Year
2022
Short Description

This article focused on creating virtual research experiences using digitized museum specimens.

Informal Learning with Extended Reality Environments: Current Trends in Museums, Heritage, and Tourism

This chapter discusses the capabilities of extended reality technology in informal learning environments, such as museums and cultural heritage sites. Recent developments in extended reality technologies have led to increased integration into these informal learning spaces and have heightened the need for a systematic investigation into the affordances of modern multimedia representations spanning tangible to virtual mediums.

Author/Presenter

Eric Poitras

Kirsten R. Butcher 

Lead Organization(s)
Year
2021
Short Description

This chapter discusses the capabilities of extended reality technology in informal learning environments, such as museums and cultural heritage sites. The chapter critically appraises several affordances of extended reality technologies while expanding on these notions by outlining the cognitive theory of multimedia learning to inform practical instructional design principles.

Museum Leadership for Engaging, Equitable Education: The Transformative Potential of Digitized Collections for Authentic Learning Experiences

Museums are local-to-global organizations operating in a digitized, distributed, and diverse 21st century world. Museums leaders face significant challenges in achieving broader relevance, meaningful engagement, and equitable outreach. This article examines the transformative potential of digitized collections to increase public engagement and enhance authentic educational efforts of museums, with specific emphasis on visual media as a key resource to achieve these outcomes.

Author/Presenter

Kirsten R. Butcher

Mitchell J. Power

Madlyn Larson

Matthew P. Orr

Susana Velásquez-Franco

Michelle A. Hudson

Vanessa J. Bailey

Lead Organization(s)
Year
2021
Short Description

Museums are local-to-global organizations operating in a digitized, distributed, and diverse 21st century world. Museums leaders face significant challenges in achieving broader relevance, meaningful engagement, and equitable outreach. This article examines the transformative potential of digitized collections to increase public engagement and enhance authentic educational efforts of museums, with specific emphasis on visual media as a key resource to achieve these outcomes.

Empirical Research on K-16 Climate Education: A Systematic Review of the Literature

Developing understanding about the Earth’s climate and the phenomenon of global climate change (GCC) is essential for all students, our future citizens and decision-makers. Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased.

Author/Presenter

Devarati Bhattacharya

Kim Carroll Steward

Cory T. Forbes

Year
2021
Short Description

Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased. We used an exhaustive, stepwise process to search for and identify relevant literature, systematically analyzing 178 empirical, peer-reviewed studies focused on climate literacy and education in formal K-16 settings.

Empirical Research on K-16 Climate Education: A Systematic Review of the Literature

Developing understanding about the Earth’s climate and the phenomenon of global climate change (GCC) is essential for all students, our future citizens and decision-makers. Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased.

Author/Presenter

Devarati Bhattacharya

Kim Carroll Steward

Cory T. Forbes

Year
2021
Short Description

Recent implementation of the Next Generation Science Standards (NGSS) has intensified the focus on teaching and learning of the Earth’s climate and GCC in formal learning environments. Concurrently, the empirical research associated with climate education has also increased. We used an exhaustive, stepwise process to search for and identify relevant literature, systematically analyzing 178 empirical, peer-reviewed studies focused on climate literacy and education in formal K-16 settings.

Standards-Aligned Instructional Supports to Promote Computer Science Teachers' Pedagogical Content Knowledge

The rapid expansion of K-12 CS education has made it critical to support CS teachers, many of whom are new to teaching CS, with the necessary resources and training to strengthen their understanding of CS concepts and how to effectively teach CS. CS teachers are often tasked with teaching different curricula using different programming languages in different grades or during different school years, and tend to receive different professional development (PD) for each curriculum they are required to teach.

Author/Presenter

Satabdi Basu

Daisy Rutstein

Carol Tate

Arif Rachmatullah

Hui Yang

Lead Organization(s)
Year
2022
Short Description

This position paper advocates supporting computer science (CS) teacher professional learning by supplementing existing curriculum-specific teacher professional development (PD) with standards-aligned PD that focuses on teachers' conceptual understanding of CS standards and ability to adapt instruction based on student understanding of concepts underlying the CS standards. We share concrete examples of how to design standards-aligned educative resources and instructionally supportive tools that promote teachers' understanding of CS standards and common student challenges and develop teachers' formative assessment literacy, all essential components of CS pedagogical content knowledge.

Teachers’ Pedagogical Content Knowledge in Mathematics and Science A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK.

Author/Presenter

David Miller

Isabella Pinerua

Jonathan Margolin

Dean Gerdeman

Year
2022
Short Description

This review synthesized insights from 27 NSF-funded projects, totaling $62 million, that studied pedagogical content knowledge (PCK) in STEM education from prekindergarten (PreK) to Grade 12, split roughly equally across mathematics and science education. The projects primarily applied correlational/observational and longitudinal methods, often targeted teaching in the middle school grades, and used a wide variety of approaches to measure teachers’ PCK. The projects advanced substantive knowledge about PCK across four major lines of research, especially regarding the measurement and development of PCK.

Modeling in Science Education: A Synthesis of Recent Discovery Research PreK-12 Projects

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Key Findings

Author/Presenter

Jonathan Margolin

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes findings from 18 NSF-funded projects, totaling nearly $22 million, that studied scientific modeling in science education from prekindergarten to Grade 12. The projects typically used descriptive designs to understand digital and nondigital modeling resources that help students explore scientific phenomena. Further, the projects provide initial evidence that resources supporting student modeling, such as modeling platforms and computer simulations, can promote science learning.

Mathematical and Scientific Argumentation in PreK-12: A Cross-Disciplinary Synthesis of Recent DRK-12 Projects

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation.

Author/Presenter

Eben Witherspoon

David Miller

Isabella Pinerua

Dean Gerdeman

Year
2022
Short Description

This review synthesizes insights from 23 NSF-funded projects, totaling $40 million, that studied mathematical and scientific argumentation in STEM education from prekindergarten (PreK) to Grade 12. The projects reported on both studies of argumentation interventions and naturalistic observations in “business-as-usual” settings. The projects advanced substantive knowledge about how to support student argumentation. In particular, the projects highlighted the importance of making an argument’s structure explicit and facilitating student-to-student discourse, especially with technological tools.