Mathematics

LessonSketch Modules for Teaching Argumentation and Proving

What can you infer from this example? and Who is Right? are two modules that address issues of mathematical content knowledge and pedagogical content knowledge for teaching reasoning and proving.Each module intends to help users strengthen their content knowledge related to logical aspects of proving.
Author/Presenter

Orly Buchbinder

Lead Organization(s)
Year
2020
Short Description

What can you infer from this example? and Who is Right? are two modules that address issues of mathematical content knowledge and pedagogical content knowledge for teaching reasoning and proving.Each module intends to help users strengthen their content knowledge related to logical aspects of proving. It also addresses pedagogical aspects, such as students' conceptions of proving and pedagogical practices for supporting students' engagement with argumentation and proving.The modules can be used by prospective secondary teachers and by practicing teachers who seek to enhance their mathematical knowledge for teaching argumentation and proving.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

STEP UP Curriculum

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Author/Presenter

The STEP UP Team

Year
2019
Short Description

High school physics lessons designed to empower teachers, create cultural change, and inspire young women to pursue physics in college. The lessons build a counternarrative in the classroom, dismantling the commonly-held stereotypes of what physics is and who physicists are, which opens possibilities in students’ minds for pursuing physics in college.

Mathematical and Computational Methods for Planning a Sustainable Future (PS-Future)

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences.

Author/Presenter

The PS-Future Team

Year
2018
Short Description

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences. Students develop an increasingly sophisticated understanding of the ways that these disciplines interact through inquiries driven by real problems such as combating invasive species, understanding environmental threats, managing water resources, interpreting weather data, and simply living greener.

Mathematical and Computational Methods for Planning a Sustainable Future (PS-Future)

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences.

Author/Presenter

The PS-Future Team

Year
2018
Short Description

Instructional modules that bring sustainability topics into classrooms in a way that emphasizes the methods and tools of mathematics and computing and illustrates their role in planning for sustainability. Through the modules, students learn foundational and emerging concepts in mathematical and computational sciences set in the context of sustainability issues involving physical, biological, environmental, and social sciences. Students develop an increasingly sophisticated understanding of the ways that these disciplines interact through inquiries driven by real problems such as combating invasive species, understanding environmental threats, managing water resources, interpreting weather data, and simply living greener.

Animated Contrasting Cases in Geometry

In this collection of materials, four geometric topics are covered in animated, digital materials.

Author/Presenter

Erin Krupa

Jon Star

Brianna Bentley

Josh Mannix

Year
2019
Short Description

In this collection of materials, four geometric topics are covered in animated, digital materials. There are also paper-based materials for the four geometric topics: Angles, Transformations, Pythagorean Theorem, and Volume. These topics are discussed in scenarios of contrasting cases, where two fictional students each present a unique method or solution strategy to the same problem. The goal is then to analyze both methods and discuss similarities and differences, strengths and weaknesses of each. 

Young Mathematicians Math Games

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.

Author/Presenter

The YM Team

Year
2021
Short Description

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.

Math Pathways & Pitfalls Algebra Readiness: Lessons and Teaching Guide, Grades 7–8

The Math Pathways & Pitfalls Algebra Readiness mathematics intervention is intended to help students tackle stubborn pitfalls head-on and transform those pitfalls into pathways for learning key standards. It offers an entire year’s worth of lessons that focus on the critical areas of algebra readi­ness, using the same research-backed principles that informed the original series.

Author/Presenter

The Math Pathways & Pitfalls Team

Lead Organization(s)
Year
2019
Short Description

The Math Pathways & Pitfalls K-8 curriculum was designed with built-in support for teachers, alignment to the Common Core State Standards and Mathematical Practices. The curriculum can be flexibly used as an intervention, as part of the core curriculum, or in after-school or small group settings.