Cadre-Admin

University of Delaware (UD)
07/15/2015

This project will develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own.

Michigan State University (MSU)
05/15/2013

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Texas State University
02/15/2023

This project examines middle school students’ graph literacy from an asset-based perspective, documenting the ways in which students think about graphs (i.e., their cognitive strategies and intuitive insights), and the ways in which instruction can build upon that thinking in order to support the development of graph literacy. Drawing from students’ graphical representations of real-life contexts (e.g., population growth) that span various mathematical domains, this program of research will develop a holistic theoretical framework that can inform mathematics instruction in multiple content areas.

Texas State University
02/15/2023

This project examines middle school students’ graph literacy from an asset-based perspective, documenting the ways in which students think about graphs (i.e., their cognitive strategies and intuitive insights), and the ways in which instruction can build upon that thinking in order to support the development of graph literacy. Drawing from students’ graphical representations of real-life contexts (e.g., population growth) that span various mathematical domains, this program of research will develop a holistic theoretical framework that can inform mathematics instruction in multiple content areas.

University of Virginia (UVA)
07/01/2013

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

George Mason University (GMU)
09/15/2023

Online STEM credit courses have become attractive to school leaders as a way to support students who fail STEM courses in face-to-face school year settings. However, there is little research about the processes involved in how schools make decisions regarding student credit recovery. The available research focuses solely on student results and is not definitive enough to support important policy decisions at the district level. This research brings redress to this policy dilemma.

George Mason University (GMU)
09/15/2023

Online STEM credit courses have become attractive to school leaders as a way to support students who fail STEM courses in face-to-face school year settings. However, there is little research about the processes involved in how schools make decisions regarding student credit recovery. The available research focuses solely on student results and is not definitive enough to support important policy decisions at the district level. This research brings redress to this policy dilemma.

Oakland University
06/01/2024

This five-year participatory research project follows students from transitional kindergarten to third grade to understand whether and how Number Talks (i.e., ten-to-fifteen-minute math discussions where students mentally solve mathematics problems and then come together as a class to share their mathematical reasoning) can empower students to develop productive mathematical identities while strengthening their number sense. As part of this work, grade level teams of teachers will investigate how to leverage the knowledge, skills, and resources students bring with them to mathematics class in order to spark productive mathematical identity development.

Oakland University
06/01/2024

This five-year participatory research project follows students from transitional kindergarten to third grade to understand whether and how Number Talks (i.e., ten-to-fifteen-minute math discussions where students mentally solve mathematics problems and then come together as a class to share their mathematical reasoning) can empower students to develop productive mathematical identities while strengthening their number sense. As part of this work, grade level teams of teachers will investigate how to leverage the knowledge, skills, and resources students bring with them to mathematics class in order to spark productive mathematical identity development.

Georgia State University (GSU)
07/01/2020

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Auburn University
07/15/2012

The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.

Boston University (BU)
06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

University of Idaho (UI)
09/01/2025

Preschool and kindergarten-aged children are still developing the skills needed to reflect on and manage their own thinking, a process often referred to as metacognition. Without strategic support from their teachers, young children may struggle to make sense of inquiry-based science activities and possibly form enduring misconceptions that may hamper future science learning. Yet, many teachers are unfamiliar with the metacognitive processes or how to intentionally facilitate their development. This project explores both how to improve early childhood teachers' understanding of metacognition and develop strategies to guide teachers in using language and feedback to more effectively support emerging metacognition and science learning in young children.

Utah State University (USU)
08/15/2010

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

Middle Tennessee State University (MTSU)
02/01/2020

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools to generate knowledge about the natural world.

University of Georgia Research Foundation, Inc. (UGARF)
03/15/2010

The aim of this project is to explore the hypothesis that a curricular focus on quantitative reasoning in middle grades mathematics can enhance development of student skill and understanding about mathematical proof. The project is addressing that hypothesis through a series of studies that include small group teaching experiments with students, professional development work with teachers, and classroom field tests of curricular units that connect quantitative reasoning and proof in algebra.

North Carolina State University (NCSU)
07/01/2024

This project partners with a mathematics department at a public middle school to co-design, analyze, and improve teachers’ translanguaging pedagogies, that is pedagogies that draw on students’ full linguistic repertoires as resources for their learning. This project will investigate how teachers make sense of and enact translanguaging pedagogies, how translanguaging pedagogies shape students’ mathematical experiences and learning opportunities, and how teachers’ learning of translanguaging spaces can be supported.

North Carolina State University (NCSU)
07/01/2024

This project partners with a mathematics department at a public middle school to co-design, analyze, and improve teachers’ translanguaging pedagogies, that is pedagogies that draw on students’ full linguistic repertoires as resources for their learning. This project will investigate how teachers make sense of and enact translanguaging pedagogies, how translanguaging pedagogies shape students’ mathematical experiences and learning opportunities, and how teachers’ learning of translanguaging spaces can be supported.

Brooklyn College, CUNY
08/01/2008

This project integrates educational and research activities with the ultimate goal of improving the mathematics education of students in high poverty, urban high schools. The project focuses on developing secondary mathematics teachers‘ capacity for implementing culturally relevant mathematics pedagogy (CuReMaP). CuReMaP consists of teaching mathematics for understanding; centering mathematics instruction on students; and providing opportunities for students to develop critical consciousness about and with mathematics.

Vanderbilt University
09/01/2022

This project considers how teachers’ engagement in scientific sensemaking as an opportunity for teachers’ learning to support more expansive science learning environments. It seeks to address two ongoing challenges in science teacher education: the need for teachers to learn (1) to recognize, value, and integrate students’ diverse ways of knowing, communicating, and relating with one another and phenomena and (2) to acknowledge and disrupt restrictive narratives that shape what counts as science in schools and who is seen as a scientist. This project will provide new models for science teacher education to engage teachers in expansive scientific sensemaking, seeking to develop more humanizing relationships between teachers, students, and science. More broadly, the project will produce a new structure for professional learning and resources for supporting more heterogeneous and equitable forms of science in teacher education.