Quantitative

CAREER: Algebraic Knowledge for Teaching: A Cross-Cultural Perspective

The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.

Lead Organization(s): 
Award Number: 
1350068
Funding Period: 
Fri, 08/15/2014 to Wed, 07/31/2019
Full Description: 

What content knowledge is needed for the teaching of mathematics? What practices are more effective for realizing student success? These questions have received considerable attention in the mathematics education community. The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. Focusing on two fundamental mathematical ideas recently emphasized by the Common Core State Standards - inverse relations and properties of operations - this study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance. It will be focused on three objectives: (1) identify AKT that facilitates algebraic thinking and develop preliminary findings into teaching materials; (2) refine research-based teaching materials based on the evaluative data; and (3) integrate research with education through course development at Temple University and teacher outreach in Philadelphia.

The model underlying this research program is that improved pedagogy will improve student learning, both directly and indirectly. A design-based research method will be used to accomplish objectives #1 and #2. Cross-cultural videotaped lessons will be first analyzed to identify AKT, focusing on teachers' use of worked examples, representations, and deep questions. This initial set of findings will then be developed into teaching materials. The U.S. and Chinese expert teachers will re-teach the lessons as part of the refinement process. Data sources will include: baseline and updated survey data (control, context, and process variables), observation, documents, videos, and interviews. The statistical techniques will include descriptive and inferential statistics and HLM will to address the hierarchical nature of the data.

This project involves students and teachers at various levels (elementary, undergraduate, and graduate) at Temple University and the School District of Philadelphia (SDP) in the U.S. and Nanjing Normal University and Nantong School District in China. A total of 600 current and future elementary teachers and many of their students will benefit directly or indirectly from this project. Project findings will be disseminated through various venues. Activities of the project will promote school district-university collaboration, a novice-expert teacher network, and cross-disciplinary and international collaboration. It is anticipated that the videos of expert teaching will also be useful future research by cognitive researchers studying ways to improve mathematics learning.

Publications
G indicates graduate student author; U indicates undergraduate student author

Journal Articles in English

  1. Ding, M., G Chen, W., & G Hassler, R. (2019). Linear quantity models in the US and Chinese elementary mathematics classrooms. Mathematical Thinking and Learning, 21, 105-130 doi: 10.1080/10986065.2019.1570834 . PDF
  2. Barnett, E., & Ding, M. (2019). Teaching of the associative property: A natural classroom investigation. Investigations of Mathematics Learning, 11, 148-166. doi: 10.1080/19477503.2018.1425592  PDF
  3. Ding, M., & G Heffernan, K. (2018). Transferring specialized content knowledge to elementary classrooms: Preservice teachers’ learning to teach the associative property. International Journal of Mathematics Educational in Science and Technology, 49, 899-921.doi: 10.1080/0020739X.2018.1426793 PDF
  4. Ding, M. (2018). Modeling with tape diagrams. Teaching Children Mathematics25, 158-165. doi: 10.5951/teacchilmath.25.3.0158  PDF
  5. G Chen, W., & Ding, M.* (2018). Transitioning from mathematics textbook to classroom instruction: The case of a Chinese expert teacher. Frontiers of Education in China, 13, 601-632. doi: 10.1007/s11516-018-0031-z (*Both authors contributed equally). PDF
  6. Ding, M., & G Auxter, A. (2017). Children’s strategies to solving additive inverse problems: A preliminary analysis. Mathematics Education Research Journal, 29, 73-92. doi:10.1007/s13394-017-0188-4  PDF
  7. Ding, M. (2016).  Developing preservice elementary teachers’ specialized content knowledge for teaching fundamental mathematical ideas: The case of associative property. International Journal of STEM Education, 3(9), 1-19doi: 10.1186/s40594-016-0041-4  PDF
  8. Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese elementary mathematics textbooks. Mathematical Thinking and Learning, 18, 45-68. doi: 10.1080/10986065.2016.1107819  PDF

Journal Articles in Chinese
Note: The Chinese journals Educational Research and Evaluation (Elementary Education and Instruction教育研究与评论 (小学教育教学) and Curriculum and Instructional Methods (课程教材教法) are both official, core journals in mathematics education field in China.

  1. Chen, W. (2018). Strategies to deal with mathematical representations – an analysis of expert’s classroom instruction. Curriculum and Instructional Methods. 数学教学的表征处理策略——基于专家教师的课堂教学分析. 课程教材教法. PDF
  2. Ma, F. ( 2018) – Necessary algebraic knowledge for elementary teachers- an ongoing cross-cultural study. Educational Research and Evaluation (Elementary Education and Instruction), 2, 5-7.  小学教师必备的代数学科知识-跨文化研究进行时。教育研究与评论 (小学教育教学), 2, 5-7. PDF
  3. Chen, J. (2018) Infusion and development of children’s early algebraic thinking – a comparative study of the US and Chinese elementary mathematics teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 8-13.  儿童早期代数思维的渗透与培养-中美小学数学教学比较研究。教育研究与评论(小学教育教学),28-13.  PDF
  4. Zong, L. (2018). A comparative study on the infusion of inverse relations in the US and Chinese classroom teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 14-19.  中美逆运算渗透教学对比研究。教育研究与评论(小学教育教学,2,14-19.  PDF
  5. Wu, X. (2018). Mathematical representations and development of children’s mathematical thinking: A perspective of US-Chinese comparison. Educational Research and Evaluation (Elementary Education and Instruction), 2, 20-24.  数学表征与儿童数学思维发展-基于中美比较视角。教育研究与评论(小学教育教学,2, 20-24.  PDF

Dissertations

  1. Hassler, R. (2016). Mathematical comprehension facilitated by situation models: Learning opportunities for inverse relations in elementary school.Published dissertation, Temple University, Philadelphia, PA. (Chair: Dr. Meixia Ding)  PDF
  2. Chen, W. (2018). Elementary mathematics teachers’ professional growth: A perspectives of TPACK (TPACK 视角下小学数学教师专业发展的研究). Dissertation, Nanjing Normal University. Nanjing, China. PDF

National Presentations
G indicates graduate student author; U indicates undergraduate student author

  • Ding, M (symposium organizer, 2019, April). Enhancing elementary mathematics instruction: A U.S.-China collaboration. Papers presented at NCTM research conference (Discussant: Jinfa Cai). (The following three action research papers were written by my NSF project teachers under my guidance).
      • Milewski Moskal, M., & Varano, A. (2019). The teaching of worked examples: Chinese approaches in U.S. classrooms. Paper 
      • Larese, T., Milewski Moskal, M., Ottinger, M., & Varano, A., (2019). Introducing Investigations math games in China: Successes and surprises. Paper
      • Murray, D., Seidman, J., Blackmon, E., Maimon, G., & Domsky, A. (2019). Mathematic instruction across two cultures: A teacher perspective. Paper
    • Ding, M., & Ying Y. (2018, June). CAREER: Algebraic knowledge for teaching: A cross-cultural perspective. Poster presentation at the National Science Foundation (NSF) PI meeting, Washington, DC.  Poster
    • Ding, M., Brynes, J., G Barnett, E., & Hassler, R. (2018, April). When classroom instruction predicts students’ learning of early algebra: A cross-cultural opportunity-propensity analysis. Paper presented at 2018 AERA conference. New York, NY.  Paper
    • Ding, M., Li, X., Manfredonia, M., & Luo, W. (2018, April). Video as a tool to support teacher learning: A Cross-cultural analysis. Paper presented at 2018 NCTM conference. Washington, DC.  PPT
    • GBarnett, E., & Ding, M. (2018, April). Teaching the basic properties of arithmetic: A natural classroom investigation of associativity. Poster presentation at 2018AERA conference, New York, NY.  Poster
    • Hassler, R., & Ding, M. (2018, April). The role of deep questions in promoting elementary students’ mathematical comprehension. Poster presentation at 2018AERA conference, New York, NY.
    • Ding, M., G Chen, W., G Hassler, R., Li, X., & G Barnett, E. (April, 2017). Comparisons in the US and Chinese elementary mathematics classrooms. Poster presentation at AERA 2017 conference (In the session of “Advancing Mathematics Education Through NSF’s DRK-12 Program”). San Antonio, TX. Poster
    • Ding, M., Li, X., G Hassler, R., & G Barnett, E. (April, 2017). Understanding the basic properties of operations in US and Chinese elementary School. Paper presented at AERA 2017 conference. San Antonio, TX.  Paper
    • Ding, M., G Chen, W., & G Hassler, R. (April, 2017). Tape diagrams in the US and Chinese elementary mathematics classrooms. Paper presented at NCTM 2017 conference. San Antonio, TX.  Paper
    • Ding, M., & G Hassler, R. (2016, June). CAREER: Algebraic knowledge for teaching in elementary school: A cross-cultural perspective. Poster presentation at the NSF PI meeting, Washington, DC. Poster
    • Ding, M. (symposium organizer, 2016, April). Early algebraic in elementary school: A cross-cultural perspective. Proposals presented at 2016 AERA conference, Washington, DC.
        • Ding, M. (2016, April). A comparative analysis of inverse operations in U.S. and Chinese elementary mathematics textbooks. Paper 
        • G Hassler, R. (2016, April). Elementary Textbooks to Classroom Teaching: A Situation Model Perspective. Paper
        • G Chen, W., & Ding, M. (2016, April). Transitioning textbooks into classroom teaching: An action research on Chinese elementary mathematics lessons. Paper
        • Li, X., G Hassler, R., & Ding, M. (2016, April). Elementary students’ understanding of inverse relations in the U.S. and China.  Paper
        • Stull, J., Ding, M., G Hassler, R., Li, X., & U George, C. (2016, April). The impact of algebraic knowledge for teaching on student learning: A Preliminary analysis. Paper
      • Ding, M., G Hassler, R., Li., X., & G Chen, W. (2016, April). Algebraic knowledge for teaching: An analysis of US experts' lessons on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA. Paper
      • G Hassler. R., & Ding, M. (2016, April). Situation model perspective on mathematics classroom teaching: A case study on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA.  Paper
      • Ding, M., & G Copeland, K. (2015, April). Transforming specialized content knowledge: Preservice elementary teachers’ learning to teach the associative property of multiplication. Paper presented at AERA 2015 conference, Chicago, IL. Paper PPT
      • Ding, M., & G Auxter, A. (2015, April). Children’s strategies to solving additive inverse problems: A preliminary analysis. Paper presented at AERA 2015 conference, Chicago, IL.  Paper

      Learning about Ecosystems Science and Complex Causality through Experimentation in a Virtual World

      This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.

      Project Email: 
      Lead Organization(s): 
      Award Number: 
      1416781
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      EcoXPT from videohall.com on Vimeo.

      Comprehending how ecosystems function is important knowledge for citizens in making decisions and for students who aspire to become scientists. This understanding requires deep thinking about complex causality, unintended side-effects, and the strengths and limitations of experimental science. These are difficult concepts to learn due to the many interacting components and non-linear interrelationships involved. Ecosystems dynamics is particularly difficult to teach in classrooms because ecosystems involve complexities such as phenomena distributed widely across space that change over long time frames. Learning when and how experimental science can provide useful information in understanding ecosystems dynamics requires moving beyond the limited affordances of classrooms. The project will: 1) advance understanding of experimentation in ecosystems as it can be applied to education; 2) show how student learning is affected by having opportunities to experiment in the virtual world that simulate what scientists do in the real world and with models; and 3) produce results comparing this form of teaching to earlier instructional approaches. This project will result in a learning environment that will support learning about the complexities of the earth's ecosystem.

      The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, developed as part of an earlier NSF-funded project. A MUVE is a simulated world in which students can virtually walk around, make observations, talk to others, and collect data. EcoMUVE simulates a pond and a forest ecosystem. It offers an immersive context that makes it possible to teach about ecosystems in the classroom, allowing exploration of the complexities of large scale problems, extended time frames and and multiple causality. To more fully understand how ecosystems work, students need the opportunity to experiment and to observe what happens. This project will advance this earlier work by developing ways for students to conduct experiments within the virtual world and to see the results of those experiments. The project will work with ecosystem scientists to study the types of experiments that they conduct, informing knowledge in education about how ecosystem scientists think, and will build opportunities for students that mirror what scientists do. The project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The resulting program will be tested against existing practice, the EcoMUVE program alone, and other programs that teach aspects of ecosystems dynamics to help teachers know how to best use these curricula in the classroom.

      Understanding the Role of Contextual Effects in STEM Pursuit and Persistence: A Synthesis Approach

      This synthesis project will inform educators and policymakers about the cumulative evidence that exists on the impacts of a variety of contextual factors on a multitude of STEM outcomes (e.g., math and science achievement, self-efficacy, future goals). This project will provide new evidence regarding the significance of youth contexts on STEM outcomes that will assist policy makers and educators in evaluating productive educational environments.

      Award Number: 
      1417601
      Funding Period: 
      Mon, 09/01/2014 to Wed, 08/31/2016
      Full Description: 

      The percentage of U.S. high school graduates pursuing STEM majors has declined over the last three decades with the largest decline among the highest achieving students. American youth are ill-prepared relative to their international counterparts - U.S. 15 year olds rank 16 out of 26 developed countries in science literacy and 19 out of 26 developed counties in mathematical literacy. There is much research in the areas of how students learn STEM in formal settings, but there is little knowledge of the impact of youth contexts on STEM. Youth contexts are social groups in the lives of young people such as neighborhoods, communities, schools, classrooms or friends. Understanding the role of youth contexts is crucial to ensuring that all students have the opportunity to learn STEM content. This project will synthesize the research literature on youth context and assess whether and how a range of these contexts shape K-12 STEM outcomes and engagement - predictors critical for later educational and occupational attainment. The researchers will conduct two large-scale meta-analyses - one based on the quantitative research body and one based on the qualitative research body - in order to draw conclusions about which contextual factors relate to which STEM outcomes across the span of extant research. In doing so, this synthesis project will inform educators and policymakers about the cumulative evidence that exists on the impacts of a variety of contextual factors on a multitude of STEM outcomes (e.g., math and science achievement, self-efficacy, future goals). This project will provide new evidence regarding the significance of youth contexts on STEM outcomes that will assist policy makers and educators in evaluating productive educational environments.

      Syntheses of the research in youth contexts and their impact in STEM will address the following four research questions: (1) How do contextual factors impact STEM learning?; (2) How do these factors vary by the specific type of context?; (3) How do these factors vary by gender and race within each context?; and, (4) Are these factors influenced by the methodological features of the research? The review will include electronic searches of educational, economics, sociology, psychology, and general science databases covering the years 1980-2014. Results will be narrowed by youth context area, and separate analysis will be conducted on gender and race/ethnicity differences in STEM outcomes. The data for the full review will be evaluated by a common set of guidelines to be published along with the findings, enabling the conclusions of the review to be transparent and allowing for detailed information to be easily accessible. The review will discuss each study that meets the inclusion requirements for a valid research design. With this methodology, this study will be the first to provide a clearinghouse of rigorous research related to contextual factors of STEM outcomes.

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1418133
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Project Evaluator: 
      Education Design
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Teacher Professional Development for Technology-enhanced Inquiry to Foster Students' 21st Century Learning

      This project will develop and evaluate a module for use in a 7th grade classroom that promotes student development of 21st Century skills with a particular focus on student development of scientific reasoning. The technology-enhanced curriculum will be designed to engage learners in deep and meaningful investigations to promote student learning of content in parallel with 21st century skills.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1417983
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      The goal of this Exploratory Design and Development Teaching project is to develop and evaluate a module for use in a 7th grade classroom that promotes student development of 21st Century skills with a particular focus on student development of scientific reasoning. The technology-enhanced curriculum will be designed to engage learners in deep and meaningful investigations to promote student learning of content in parallel with 21st century skills. The module will be designed using principles of inquiry-based learning as well as the principles of universal design for learning (UDL). The motivation behind this project is that it will directly contribute to the limited research on the interventions that impact teachers' capacity to provide high quality 21st century STEM education to all students, with a specific focus on underrepresented minorities and those with disabilities. The classroom setting for which the curriculum will be delivered is within an urban district which includes a large number of minority students and over 20% students with specific learning disabilities. The project will catalyze students' deep understanding of content knowledge while developing 21st century skills in parallel; hence better preparing students for sustainable learning experiences into high school and beyond.

      A study will be conducted to determine the effectiveness of the learning modules on classroom practices as well as student learning. A mixed methods design involving multiple measures will provide insights into changes in teachers' content knowledge, teaching practices that include a focus on 21st century learning, and fidelity of use of the TI21 framework for implementation of the learning activities. Pre- and post-testing of students using a scientific reasoning assessment and surveys on attitudes towards STEM, along with validated and widely used concept inventories, will provide further measures. As part of this exploratory project, the design and validity of instruments for use with the targeted population, which includes students with specific learning disabilities, will be further tested. This will include administering some of the assessments through web-based apps to meet the needs of these students. The learning modules, with embedded assessments and web-based apps, will provide an innovative approach in which transferable 21st century skills can be developed and measured. Outcomes of this project will be disseminated throughout the urban school system and therefore have the ability to impact thousands of other students (mostly minorities and many with disabilities) and their science, math, and technology teachers. Project outcomes will also inform the development of future science and/or modules for use in similar urban classroom settings.

      Survey of U.S. Middle School Mathematics Teachers and Teaching

      This descriptive study will systematically track key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. 

      Lead Organization(s): 
      Award Number: 
      1417731
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      For the past 25 years, three major goals have animated U.S. educational policy: developing more knowledgeable teachers, implementing more challenging curricula, and fostering more ambitious instruction in classrooms. Yet despite volumes of policy guidance, on-the-ground effort, and research over the past decades, few comprehensive and representative portraits of teacher and teaching quality in U.S. classrooms exist. Instead, most research into these topics has been conducted with small or nonrepresentative samples, with the result that it is difficult to ascertain what, if any, progress has been made toward the three goals. Unlike student achievement, which the National Assessment of Educational Progress has tracked for almost 50 years, the classroom experiences of the typical U.S. student remain obscure.

      To address this issue, the 4-year descriptive study will begin by systematically tracking key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. To initiate this line of research, the research team will collect data in 2015 from a national representative sample of 600 U.S. middle school mathematics teachers. A written survey will build on one conducted in 2005-06, allowing for the comparison over time of teachers' curriculum use and mathematical knowledge. The research team will also record and score videos of instruction from a subset of these teachers, enabling both a description of current instruction and a comparison to lessons captured during the 1999 TIMSS video study. Both the survey and video datasets can serve as referents for future studies of instruction, for instance, studies investigating whether student participation in the development of mathematical ideas has changed over time. The research team will use both old and new technologies to complete the study. The mail survey will consist of existing items that tap teachers' mathematical knowledge for teaching, or the professional knowledge teachers draw upon in providing mathematics instruction to children. To conduct the video study, they will mail tablets for teachers to record their own instruction, and guidance on taping will be provided via YouTube video. The lessons that result will be scored using the Mathematical Quality of Instruction (MQI) instrument. The MQI measures key dimensions of mathematics classrooms, including the proportion of class time spent on mathematical tasks, the mathematical integrity of lesson content, and the nature of student participation in the development of mathematical ideas. Video and data from the survey will be made available to other researchers for scoring with other methods and observation instruments. Teachers, parents and students will be asked to consent to their classroom videos being made available. The study is largely descriptive, as are many others of its kind. However, describing the range of U.S. instruction can have a profound effect on the field, much as the TIMSS video studies did over a decade ago. Establishing methodologies for studying teachers and teaching at scale will contribute to efforts to evaluate and monitor progress toward broad-reaching national goals.

      Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

      This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

      Lead Organization(s): 
      Award Number: 
      1417809
      Funding Period: 
      Fri, 08/01/2014 to Tue, 07/31/2018
      Full Description: 

      The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice. 

      The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

      Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

      Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1418270
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

      The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

      Promoting Active Learning Strategies in Biology (PALS)

      This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

      Award Number: 
      1417735
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

      The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

      Investigating How to Enhance Scientific Argumentation through Automated Feedback in the Context of Two High School Earth Science Curriculum Units

      This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. 

      Lead Organization(s): 
      Award Number: 
      1418019
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      With the current emphasis on learning science by actively engaging in the practices of science, and the call for integration of instruction and assessment; new resources, models, and technologies are being developed to improve K-12 science learning. Student assessment has become a nationwide educational priority due, in part, to the need for relevant and timely data that inform teachers, administrators, researchers, and the public about how all students perform and think while learning science. This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. The project will apply advanced automated scoring tools to students' written scientific arguments, provide individual students with customized feedback, and teachers with class-level information to assist them with improving scientific argumentation. The key outcome of this effort will be a technology-supported assessment model of how to advance the understanding of argumentation, and the use of multi-level feedback as a component of effective teaching and learning. The project will strengthen the program's current set of funded activities on assessment, focusing these efforts on students' argumentation as a complex science practice.

      This design and development research targets high school students (n=1,940) and teachers (n=22) in up to 10 states over four years. The research questions are: (1) To what extent can automated scoring tools, such as c-rater and c-rater-ML, diagnose students' explanations and uncertainty articulations as compared to human diagnosis?; (2) How should feedback be designed and delivered to help students improve scientific argumentation?; (3) How do teachers use and interact with class-level automated scores and feedback to support students' scientific argumentation with real-data and models?; and (4) How do students perceive their overall experience with the automated scores and immediate feedback when learning core ideas in climate change and fresh-water availability topics through scientific argumentation enhanced with modeling? In Years 1 and 2, plans are to conduct feasibility studies to build automated scoring models and design feedback for previously tested assessments for the two curriculum units. In Year 3, the project will implement design studies in order to identify effective feedback through random assignment. In Year 4, a pilot study will investigate if effective feedback should be offered with or without scores. The project will employ a mixed-methods approach. Data-gathering strategies will include classroom observations; screencast and log data of teachers' and students' interaction with automated feedback; teachers' and students' surveys with selected- and open-ended questions; and in-depth interviews with teachers and students. All constructed-response explanations and uncertainty items will be scored using automated scoring engines with fine-grained rubrics. Data analysis strategies will include multiple criteria to evaluate the quality of automated scores; descriptive statistical abalyses; analysis of variance to investigate differences in outcomes from the designed studies' pre/posttests and embedded assessments; analysis of covariance to investigate student learning trajectories; two-level hierarchical linear modeling to study the clustering of students within a class; and analysis of screencasts and log data.

      Pages

      Subscribe to Quantitative