Quantitative

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Three-Dimensional Teaching and Learning: Rebuilding and Researching an Online Middle School Curriculum

This project will develop an online curriculum-based supported by a teacher professional development (PD) program by rebuilding an existing life science unit of Biological Sciences Curriculum Study (BSCS) Middle School Science. The project is designed to be an exemplar of fully digital Next Generation Science Standards (NGSS) aligned resources for teachers and students, creating an NGSS-aligned learning environment combining disciplinary core ideas with science and engineering practices and cross-cutting concepts.

Lead Organization(s): 
Award Number: 
1502571
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was funded by the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project, in collaboration with Oregon Public Broadcasting, will develop an online curriculum-based supported by a teacher professional development (PD) program by rebuilding an existing life science unit of Biological Sciences Curriculum Study (BSCS) Middle School Science. The materials will include strategically integrated multimedia elements including animations, interactive learning experiences, and enhanced readings for students, as well as classroom videos for teachers that will help all users gain a deeper understanding of three-dimensional learning. The project is designed to be an exemplar of fully digital Next Generation Science Standards (NGSS) aligned resources for teachers and students, creating an NGSS-aligned learning environment combining disciplinary core ideas with science and engineering practices and cross-cutting concepts. Using the powerful affordances of a digital environment, the project will invigorate and inspire learners and support teachers as only a media-rich environment can do.

The project will develop and research the project innovation, the combination of digital instructional materials for students and online teacher PD using a proven lesson-analysis framework. Although prior research has demonstrated the efficacy of the lesson analysis PD and curriculum elements independently, there has been little investigation of their joint ability to transform teaching and learning. The project will merge research and development in this project by incorporating a complex array of multi-component assessment activities, including classroom-based assessments, in a quasi-experimental study. Assessment activities will be designed using an evidence-centered design process that will involve the careful selection and development of assessment tasks, scoring rubrics, and criteria for scoring based on the performance expectations (PEs) and the best ways to elicit evidence about student proficiency with those PEs. The research, carried out by SRI International, will use multi-component tasks that will support inferences about student learning and advance understanding of how to assess NGSS learning. Project research and resources, which will include a digital, middle school life sciences unit, teacher PD and online digital resources, and related assessment tools, which will be widely disseminated to policy makers, researchers, and practitioners.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

Award Number: 
1551143
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards is an exploratory project to conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level. Research and Curriculum Development team consisting of master elementary science teachers, university professors including science, engineering, and science teacher education faculty, and a science education post doc or graduate student will engage in developing the Next Generation Science Standards (NGSS) aligned curricula integrating science, engineering, and language arts, and publishing STEM education research. The importance of this project will be the development of curricula integrating science, engineering, and language arts at the elementary level. Lesson plans or teaching activities in the integrated curricula will be written in practitioner article format. In the NGSS the engineering design is raised to the same level as scientific inquiry and included as a vital element of science education. This integrated approach aims to provide three-dimensional learning experience as specified in the NGSS to elementary students while meaningfully integrating engineering, science, reading, and writing through real life engineering design problems. The NGSS aligned curricula that will be developed in this project can also be used in other states that adopted the NGSS.

An Integrated curriculum for grades 1-2 will be developed in year 1. In year 2, the project will develop a curriculum for grades 3-5. Each year, the project will develop and field-test a new curriculum, and provide professional development organized around the integrated curriculum to 20 elementary teachers at the Clark County School District in Las Vegas, Nevada.

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Retention of Early Algebraic Understanding

The project will use a quasi-experimental design to explore students' knowledge of core algebraic concepts in middle grades (grade 6), one year after their completion of 3-year, grades 3-5 early algebra intervention. The research questions are: (1) how well students who received a specific intervention retain their understanding of algebraic concepts in future years; and (2) whether and how the intervening year of regular classroom instruction in grade 6 influences the algebra understanding of both intervention and comparison students.

Lead Organization(s): 
Award Number: 
1550897
Funding Period: 
Tue, 09/01/2015 to Wed, 08/31/2016
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by prek-12 students and teachers through research and development of innovative resources, models and tools. While national and state standards provide important benchmarks for algebra learning beginning in kindergarten, they do not provide rigorously tested models by which these algebra standards might be attained in elementary grades classrooms in ways that will ensure further mathematics achievement. This work will addresses this need by closely documenting the effectiveness of models and tools, developed in our previous work, for early algebra education

The proposed project will use a quasi-experimental design to explore students' knowledge of core algebraic concepts in middle grades (grade 6), one year after their completion of 3-year, grades 3-5 early algebra intervention. The project will also study the algebraic knowledge of a comparison group of students. The research questions are: (1) how well students who received a specific intervention retain their understanding of algebraic concepts in future years; and (2) whether and how the intervening year of regular classroom instruction in grade 6 influences the algebra understanding of both intervention and comparison students.

Collaborative Math: Creating Sustainable Excellence in Mathematics for Head Start Programs

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

Lead Organization(s): 
Award Number: 
1503486
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. CM content will focus on nine topics emphasized in preschool mathematics, including sets, number sense, counting, number operations, pattern, measurement, data analysis, spatial relationships, and shape. These concepts are organized around Big Ideas familiar in early math, are developmentally appropriate and foundational to a young child's understanding of mathematics. The project addresses the urgent need for improving early math instruction for low-income children. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach. Likewise, the project will involve teachers, teacher aides, and administrators through a whole school approach in PD, which research has shown is more effective than involving only lead teachers. Through several phases of development and research, the project will investigate the contributions of project components on increases in teacher knowledge and classroom practices, student math knowledge, and overall implementation. The project will impact approximately 200 Head Start (HS) teaching staff, better preparing them to provide quality early math experiences to more than 3,000 HS children during the project period. Upon the completion of the project, a range of well-tested CM materials such as resource books and teaching videos will be widely available for early math PD use. Assessment tools that look at math knowledge, attitudes, and teacher practice will also be available. 

The project builds on Erikson Institute research and development work in fields of early math PD and curriculum. Over a 4-year span, project development and research will be implemented in 4 phases: (1) adapting the existing CM and research measures for HS context; (2) conducting a limited field study of revised CM in terms of fidelity and director, teacher/aide, and student outcomes, and study of business as usual (BAU) comparison groups; (3) a study of the promise of the intervention promise with the phase 3 BAU group (who offered baseline in phase 2) and (4) a test of the 2nd year sustainability intervention with phase 3 treatment group. The teacher and student measures are all published, frequently used measures in early childhood education and will be piloted and refined prior to full implementation. The project is a partnership between Erikson, SRI, and Chicago Head Start programs. Project research and resources will be widely disseminated to policy makers, researchers, and practitioners.

Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

Lead Organization(s): 
Award Number: 
1503451
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The 3-year exploratory project, Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics, will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). While mathematics problem-solving skills are critical in all areas of daily life, many students with LDM do not acquire key math concepts such as additive and multiplicative reasoning in a proficient manner during the early school years. In fact, about 5-10% of school-age children are identified as having mathematical disabilities which might cause them to experience considerable difficulties in the upper grades and experience persistent academic, life, and work challenges. Despite the proliferation of web-based mathematical games for early learners, there are very few programs or tools that target growth in the conceptual understanding of fundamental mathematical ideas, which is essential in enabling young students with LDM to perform proficiently in mathematical and everyday contexts. COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. COMPS-A will also make the reasoning and underlying mathematical model more explicit to them, and the tool's flexibility will facilitate group or one-on-one instruction in regular classroom settings, in other sessions during or after the school day, and at home. COMPS-A addresses a significant practical issue in today's classrooms by providing individualized and effective RtI intervention programs for students with LDM.

COMPS-A program represents a mathematical model-based problem-solving approach that emphasizes understanding and representation of mathematical relations in algebraic equations and, thus, will support growth in generalized problem-solving skills.COMPS-A will achieve the following objectives: 1) Create the curriculum content, screen design, and a teacher's manual for all four modules in the area of additive word problem solving; 2) Design and develop the cross-platform computer application that can be ported as a web-based, iPad, Android, or Windows app, and this flexibility will make the program accessible to all students; and 3) Conduct small-scale single subject design and randomized controlled trial studies to evaluate the potential of COMPS-A to enhance students' word problem-solving performance. The following research questions will be resolved: (1) What is the functional relationship between the COMPS-A program and students' performance in additive mathematics problem solving? (2) What is the teacher's role in identifying students' misconceptions, alternative reasoning, and knowledge gaps when students are not responsive to the intervention program? (3) What are the necessary instructional scaffolds that will address students' knowledge gaps and therefore facilitate the connection between students' conceptual schemes and the mathematical models necessary for problem solving in order to promote meaningful understanding and construction of additive reasoning? A functional prototype of the COMPS-A will be developed followed by a single-subject design study with a small group of students with LDM to field-test the initial program. Finally, a pretest-posttest, comparison group design with random assignment of participants to groups will then be used to examine the effects of the two intervention conditions: COMPS-A and business as usual. An extensive dissemination plan will enable the project team to share results to a wider community that is responsible for educating all students and, especially, students with LDM.

 

Pages

Subscribe to Quantitative