Quantitative

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Learning Evolution through Human and Non-Human Case Studies

This project will develop and test two curriculum units on the topic of evolution for high school general biology courses, with one unit focusing primarily on human case studies to teach evolution and one unit focusing primarily on case studies of evolution in other species. The two units will be compared to examine how different approaches to teaching evolution affect students and teachers.

Lead Organization(s): 
Award Number: 
1621194
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project aligns with Alabama's College & Career-Ready Standards (CCRS) for biology in grades 9-12 relating to Unity and Diversity. These standards are based on the Next Generation Science Standards (NGSS) and go into effect during the 2016-2017 school year. Building on prior work (DRL-119468), this project will develop and test two curriculum units on the topic of evolution for high school general biology courses, with one unit focusing primarily on human case studies to teach evolution and one unit focusing primarily on case studies of evolution in other species. The two units will be compared to examine how different approaches to teaching evolution affect students and teachers. The project will also develop and field test a Cultural and Religious Sensitivity (CRS) Resource to provide teachers with strategies for creating supportive learning environments where understanding of the scientific account of evolution is aided while also acknowledging the cultural controversy associated with learning about evolution. The impacts on student and teacher outcomes of using the curriculum units and the CRS Resource will be tested in classrooms by comparing the outcomes of the human versus non-human units, and by using or not using classroom strategies from the CRS Resource.

The project will examine student and teacher outcomes of four treatment groups: 1) Curriculum Unit 1, 2) Curriculum Unit 1 with the CRS Resource, 3) Curriculum Unit 2, and 4) Curriculum Unit 2 with the CRS Resource. The research questions are: 1) In what ways does using examples of human versus non-human evolution to teach core evolutionary concepts affect understanding of, acceptance of, and motivation to learn about evolution among high school introductory biology students? 2) In what ways do using teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect high school introductory biology teachers' comfort and confidence with teaching evolution? 3) In what ways does using examples of human versus non-human evolution to teach fundamental evolutionary concepts in conjunction with teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect understanding of, acceptance of, and motivation to learn about evolution among high school introductory biology students? And 4) In what ways does using examples of human versus non-human evolution to teach fundamental evolutionary concepts in conjunction with teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect high school introductory biology teachers' comfort and confidence with teaching evolution? The project will use a 2 X 2 X 2 mixed factorial quasi-experimental research design to answer these questions, and will include a total of 32 teachers, 8 in each treatment group, along with approximately 800 students. Each assessment will be administered as a pretest two weeks prior to starting the curriculum unit and as a posttest immediately after completing the unit. Test scores will be the within-subjects factors, and Curriculum Unit and CRS Resource will be the between-subjects factors.

Geological Models for Explorations of Dynamic Earth (GEODE): Integrating the Power of Geodynamic Models in Middle School Earth Science Curriculum

This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.

Lead Organization(s): 
Award Number: 
1621176
Funding Period: 
Mon, 08/15/2016 to Fri, 07/31/2020
Full Description: 

This project will contribute to the Earth science education community's understanding of how engaging students with dynamic computer-based systems models supports their learning of complex Earth science concepts regarding Earth's surface phenomena and sub-surface processes. It will also extend the field's understandings of how students develop modeling practices and how models are used to support scientific endeavors. This research will shed light on the role uncertainty plays when students use models to develop scientific arguments with model-based evidence. The GEODE project will directly involve over 4,000 students and 22 teachers from diverse school systems serving students from families with a variety of socioeconomic, cultural, and racial backgrounds. These students will engage with important geoscience concepts that underlie some of the most critical socio-scientific challenges facing humanity at this time. The GEODE project research will also seek to understand how teachers' practices need to change in order to take advantage of these sophisticated geodynamic modeling tools. The materials generated through design and development will be made available for free to all future learners, teachers, and researchers beyond the participants outlined in the project.

The GEODE project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices. The GEODE software will permit students to "program" a series of geologic events into the model, gather evidence from the emergent phenomena that result from the model, revise the model, and use their models to explain the dynamic mechanisms related to plate motion and associated geologic phenomena such as sedimentation, volcanic eruptions, earthquakes, and deformation of strata. The project will also study the types of teacher practices necessary for supporting the use of dynamic computer models of complex phenomena and the use of curriculum that include an explicit focus on uncertainty-infused argumentation.

Modest Supports for Sustaining Professional Development Outcomes over the Long-Term

This study will investigate factors influencing the persistence of teacher change after professional development (PD) experiences, and will examine the extent to which modest supports for science teaching in grades K-5 sustain PD outcomes over the long term.

Lead Organization(s): 
Award Number: 
1620979
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

This study will investigate factors influencing the persistence of teacher change after professional development (PD) experiences, and will examine the extent to which modest supports for science teaching in grades K-5 sustain PD outcomes over the long term. Fifty K-12 teachers who completed one of four PD programs situated in small, rural school districts will be recruited for the study, and they will participate in summer refresher sessions for two days, cluster meetings at local schools twice during the academic year, and optional Webinar sessions two times per year. Electronic supports for participants will include a dedicated email address, a project Facebook page, a biweekly newsletter, and access to archived Webinars on a range of topics related to teaching elementary school science. Modest support for replacement of consumable supplies needed for hands-on classroom activities will also be provided. The project will examine the extent to which these modest supports individually and collectively foster the sustainability of PD outcomes in terms of the instructional time devoted to science, teacher self-efficacy in science, and teacher use of inquiry-based instructional strategies. The effects of contextual factors on sustainability of PD outcomes will also be examined.

This longitudinal study will seek answers to three research questions: 1) To what extent do modest supports foster the sustainability of professional development outcomes in: a) instructional time in science; b) teachers' self-efficacy in science; and c) teachers' use of inquiry-based instructional strategies? 2) Which supports are: a) the most critical for sustainability of outcomes; and b) the most cost-effective; and 3) What contextual factors support or impede the sustainability of professional development outcomes? The project will employ a mixed-methods research design to examine the effects of PD in science among elementary schoolteachers over a 10 to 12 year period that includes a 3-year PD program, a 4-6 year span after the initial PD program, and a 3-year intervention of modest supports. Quantitative and qualitative data will be collected from multiple sources, including: a general survey of participating teachers regarding their beliefs about science, their instructional practices, and their instructional time in science; a teacher self-efficacy measure; intervention feedback surveys; electronic data sources associated with Webinars; teacher interviews; school administrator interviews; and receipts for purchases of classroom supplies. Quantitative data from the teacher survey and self-efficacy measure will be analyzed using hierarchical modeling to examine growth rates after the original PD and the change in growth after the provision of modest supports. Data gathered from other sources will be tracked, coded, and analyzed for each teacher, and linked to the survey and self-efficacy data for analysis by individual teacher, by grade level, by school, by district, and by original PD experience. Together, these data will enable the project team to address the project's research questions, with particular emphasis on determining the extent to which teachers make use of the various supports offered, and identifying the most cost-effective and critical supports.

Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources (Collaborative Research: Phillips)

This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.

Lead Organization(s): 
Award Number: 
1620934
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The primary goal of this project is to help middle school students deepen and communicate their understanding of mathematics. The project will develop and test a digital platform for middle school mathematics classrooms. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class. The digital learning environment makes use of a problem-centered mathematics curriculum that evolved from extensive development, field-testing and evaluation, and is widely used in middle schools. The research will also contribute to understanding about the design and innovative use of digital resources and collaboration in classrooms as an increasing number of schools are drawing on these kinds of tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project will support students to collaboratively construct, manipulate, and interpret shared representations of mathematics using digital inscriptional resources. The research activities will significantly enhance our understanding of student learning in mathematics in three important ways. The project will report on how (1) evidence of student thinking is made visible through the use of digital inscriptional resources, (2) student inscriptions are documented, discussed, and manipulated in collaborative settings, and (3) students' conceptual growth of big mathematical ideas grows over time. An iterative design research process will incorporate four phases of development, testing and revision, and will be conducted to study student use of the digital learning space and related inscriptional resources. Data sources will include: classroom observations and artifacts, student and teacher interviews and surveys, student assessment data, and analytics from the digital platform. The process will include close collaboration with teachers to understand the implementation and create revisions to the resources.


Project Videos

2019 STEM for All Video Showcase

Title: Math Understanding in a Digital Collaborative Environment

Presenter(s): Alden Edson, Kristen Bieda, Chad Dorsey, Nathan Kimball, & Elizabeth Phillips


An Online STEM Career Exploration and Readiness Environment for Opportunity Youth

This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.

Award Number: 
1620904
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

CAST, the University of Massachusetts-Amherst, and YouthBuild USA aim to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM). This will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways. The program will provide opportunity youth with a personalized and portable tool to explore STEM careers, demonstrate their STEM learning, reflect on STEM career interests, and take actions to move ahead with STEM career pathways of interest.

The proposed program addresses two critical and interrelated aspects of STEM learning for opportunity youth: the development of STEM foundational knowledge; and STEM engagement, readiness and career pathways. These aspects of STEM learning are addressed through an integrated program model that includes classroom STEM instruction; hands-on job training in career pathways including green construction, health care, and technology.


Project Videos

2019 STEM for All Video Showcase

Title: Building a Diverse STEM Talent Pipeline: Finding What Works

Presenter(s): Tracey Hall

2018 STEM for All Video Showcase

Title: Bridging the Gap Between Ability and Opportunity in STEM

Presenter(s): Sam Johnston


Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Jackson)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1620851
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Connected Biology: Three-Dimensional Learning from Molecules to Populations (Collaborative Research: White)

This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.

Lead Organization(s): 
Award Number: 
1620746
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

This project will contribute to this mission by designing, developing, and examining the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection. These traditionally separate topics will be interlinked and will be designed to engage students in the disciplinary core ideas, crosscutting concepts, and the science and engineering practices defined by the NGSS. Once developed, the curriculum materials will be available online for use in high school biology courses nationwide.

This project will be guided by two main research questions: 1) How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?; and 2) How do students' abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another? The project will follow an iterative development plan involving cycles of designing, developing, testing and refining elements of the new curricular model. The project team will work with master teachers to design learning sequences that use six case studies to provide examples of how genetic and evolutionary processes are interlinked. An online data exploration environment will extend learning by enabling students to simulate phenomena being studied and explore data from multiple experimental trials as they seek patterns and construct cause-and-effect explanations of phenomena. Student learning will be measured using a variety of assessment tools, including multiple-choice assessment of student understanding, surveys, classroom observations and interviews, and embedded assessments and log files from the online learning environment.

Developing A Discourse Observation Tool and Online Professional Development to Promote Science, Oral Language and Literacy Development from the Start of School

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

Lead Organization(s): 
Award Number: 
1620580
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The goal of this project is to develop resources and a professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse. A central component of the Next Generation Science Standards (NGSS) is engaging students in discourse with a focus on formulating and communicating scientific explanations. This project will develop a classroom observation tool that will help teachers examine changes in the quantity and quality of science discourse in K-2 classrooms over time. The project will also develop an online professional development (PD) model that uses the new observation tool to help teachers analyze their own classroom practices and the practice of others to improve classroom efforts to foster improved scientific discourse.

This early stage design and development study will employ a Design-Based Implementation Research (DBIR) approach to develop the new classroom observation tool and online professional development model, and then seek answers to the following research questions: 1) How can a classroom observation measure be developed to effectively capture the range in quality of science discourse in early elementary classrooms?; 2) How can an online PD model be developed based on the new observation tool?; 3) How do teachers' knowledge and instructional practice change over the course of participation in the yearlong PD?; and 4) How does the quantity and quality of science discourse change in K-2 classrooms over the course of teachers' participation in a yearlong online PD experience that is built around the new observation tool? The project will engage 36 teachers and their 36 different classrooms in Michigan and use multiple data sources to understand whether and how teacher knowledge and instructional practices change during participation in the new PD model. Multiple iterations of design, data collection, and refinement will be used to understand how, when, and why features of the PD and observation tool might combine to transform science discourse in early elementary classrooms. In years 3 and 4, the project team will conduct two year-long implementation trials with cohorts of 15 teachers and 5 instructional coaches (experienced science teachers) who will use the PD and tool in order study their implementation and make iterative improvements. The project will also gather data to understand changes in teacher knowledge and practice as well as video data to document changes in classroom discourse.

Developing Preservice Elementary Teachers' Ability to Facilitate Goal-Oriented Discussions in Science and Mathematics via the Use of Simulated Classroom Interactions

The project will develop, pilot, and validate eight discussion-oriented performance tasks that will be embedded in an online simulated classroom environment. The resulting research and development products could be used nationwide in teacher preparation and professional development settings to assess and develop teachers' ability to support classroom discussion in science and mathematics.

Lead Organization(s): 
Award Number: 
1621344
Funding Period: 
Mon, 08/01/2016 to Fri, 07/31/2020
Full Description: 

There is widespread recognition in educational literatures that academic discourse is important for supporting students' developing understanding in the disciplines of science and mathematics. College and career-ready standards also call for attention to supporting students' learning of how to think and communicate like disciplinary experts. The teaching practice of orchestrating classroom discussion is intended to support students in obtaining higher levels of academic achievement but also to support students' participation in a democratic society. However, research has found that teachers--particularly novice teachers--struggle to orchestrate discussion effectively for science and mathematics. The investigators of this project hypothesize that opportunities to 1) practice orchestrating discussions in simulated classroom environments; 2) receive constructive feedback on their practice; and 3) reflect on that feedback and their experiences with peers and teacher educators, develops preservice teachers' abilities to lead productive classroom discussion. This may allow them to be more effective at orchestrating discussion when they begin teaching real students in science and mathematics classrooms. The project team, which includes investigators from Educational Testing Service (ETS) and software engineers at Mursion, will develop, pilot, and validate eight discussion-oriented performance tasks that will be embedded in an online simulated classroom environment. The resulting research and development products could be used nationwide in teacher preparation and professional development settings to assess and develop teachers' ability to support classroom discussion in science and mathematics.

The Discovery Research K-12 (DRK-12) program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This Early Stage Design and Development project will 1) iteratively develop, pilot, and refine eight science and mathematics discussion-oriented performance tasks (six formative, two summative), scoring rubrics, and rater training materials; 2) deploy the intervention in four university sites, collecting data from 240 prospective teachers in both treatment and business-as-usual courses; and 3) use data analyses and expert review to build a five-part argument for the validity of the assessment and scoring rubrics. Data sources include prospective teachers' background and demographic information, cognitive interviews, surveys, scores on content knowledge for teaching (CKT) instruments, performance and scores on the developed performance tasks, discussion scores on Danielson's Framework for Teaching observation protocol, and case study interviews with prospective teachers. The project team will also conduct interviews with teacher educators and observe classroom debrief sessions with prospective teachers and their teacher educators. The research will examine each teacher's scores on two summative performance tasks administered pre- and post-intervention and will look for evidence of growth across three formative tasks. Linear regression models will be used to understand relationships among teachers' CKT scores, pre-intervention performance task scores, group assignment, and post-intervention performance task scores. A grounded theory approach to coding qualitative data of 24 case study teachers, observations of debrief sessions, and interviews with teacher educators will generate descriptive use cases, illustrating how the tools can support prospective teachers in learning how to facilitate discussions focused on science and mathematics argumentation. Mursion will develop a webpage on its website dedicated to this project that will allow the team to post the new performance-based tasks, scoring rubrics, and examples of performance in the simulated environment for teacher educators, educational researchers, and policy makers and collect feedback from them that can be used as another information source for refining tools and their use. Research findings will also be disseminated by more traditional means, such as papers in peer-reviewed research and practitioner journals and conference presentations.


Project Videos

2019 STEM for All Video Showcase

Title: Simulated Classrooms as Practice-Based Learning Spaces

Presenter(s): Jamie Mikeska, Heather Howell, & Carrie Straub

2018 STEM for All Video Showcase

Title: Leading Science/Math Discussions in a Simulated Classroom

Presenter(s): Heather Howell, Jamie Mikeska, & Carrie Straub

 2017 STEM for All Video Showcase
Title: Simulated Classroom Environments for Discussions

Presenter(s): Jamie Mikeska, Heather Howell, & Carrie Straub


Pages

Subscribe to Quantitative