Quantitative

Researching the Efficacy of the Science and Literacy Academy Model (Collaborative Research: Strang)

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

Award Number: 
1223021
Funding Period: 
Wed, 08/01/2012 to Sun, 07/31/2016
Full Description: 

This award is doing a research study of three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. Model 1 is a one-week institute based on classroom discourse practices and a 2-week practicum (cohort 1). Model 2 is the one-week institute (cohort 2). Model 3 is a "business as usual" model (cohort 3) based on normal professional development provided by the school district. Cohorts 1 and 2 experience the interventions in year 1 with four follow-up sessions in each of years 2 and 3. In year 4 they receive no PD, but are being observed to see if they sustain the practices learned. Cohort 3 receives no treatment in years 1 and 2, but participates in a revised version of the institute plus practicum in year 3 with four follow up sessions in year 4. The Lawrence Hall of Science provides the professional development, and Stanford University personnel are conducting the research. The teachers come from the Oakland Unified School District. Science content is the GEMS Ocean Sciences Sequence.

There are 3 research questions;

1. In what ways do practicum-based professional development models influence science instructional practice?

2. What differences in student outcomes are associated with teachers' participation in the different PD programs?

3. Is the impact of the revised PD model different from the impact of the original model?

This is a designed-based research model. Teacher data is based on interviews on beliefs about teaching and the analysis of video tapes of their practicum and classroom performance using the Discourse in Inquiry Science Classrooms instrument. Student data is based on the GEMS unit pre- and post-tests and the California Science Test for 5th graders. Multiple analyses are being conducted using different combinations of the data from 8 scales across 4 years.

There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos. These will be presented in publications and conference presentations and be posted on linked websites at the Lawrence Hall of Science and the Center to Support Excellence in Teaching at Stanford University.

Learning Trajectories to Support the Growth of Measurement Knowledge: Pre-K Through Middle School

This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222944
Funding Period: 
Wed, 08/01/2012 to Tue, 07/31/2018
Full Description: 

This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This four-year, mixed methods research project tests, revises and extends learning trajectories (LTs) for children's knowledge of geometric measurement across a ten-year span of human development. Specifically, research teams from Illinois State University and the University at Denver are working with children in urban and suburban schools to (1) validate and extend prior findings from previous NSF-funded research developing measurement learning trajectories with children in pre-K to Grade 5, and (2) generate and extend portions of trajectories for geometric measurement for Grades 6-8.

The project employs a form of microgenetic studies with 24-50 children per grade from pre-K through Grade 5 representing a stratified random sample from a specific set of suburban schools. These studies will test the validity, replicability and generalizability of the LTs for length, area, and volume. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments. Analysis of variance measures with pre/post assessments in an experimental/control design will complement the repeated sessions method of microgenetic analysis.

To explore and extend LTs for children in Grade 6-8, the project employs teaching experiments. This design is used to generate and extend portions of trajectories for geometric measurement, and to explore critical aspects of measurement in clinical and classroom contexts. This work is coordinated with the teaching and learning standards issued by the Council of Chief State School Officials/National Governors Association, the National Council of Teachers of Mathematics, the National Science Teachers Association, the American Association of the Advancement of Science, and the National Research Council with cognitive and mathematics/science education literature. Emerging constructs for the hypothetical LT levels in relation to relevant frameworks generated by other researchers and those implied by standards documents to establish ongoing sequences of the experimental interventions for grades 6-8 are being compared, critiqued and evaluated.

This project provides a longitudinal account of pre-K to Grade 8 children's ways of thinking and understanding mathematical and scientific concepts of measurement based upon empirical analysis. The resulting learning trajectory will represent state of the art integrated, interdisciplinary, theoretically- and empirically-based descriptions of increasingly sophisticated and complex levels of thinking in the domain of measurement (albeit, more tentative for Grades 6-8). This account will be used to verify and/or modify existing accounts of children's development of reasoning from short-term analyses of learning or cross-sectional studies. There are not yet integrative longitudinal studies describing this cognitive domain for area or volume measurement. This trajectory-based analysis of development and instruction supports the design and testing of integrative, formative assessment of individuals and groups of children. Such learning trajectories will be useful in implementing the standard-focused curriculum described in the Common Core State Standards Mathematics and in supporting the multiple large assessment projects currently underway

Assessing Secondary Teachers' Algebraic Habits of Mind (Collaborative Research: Stevens)

This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.

Partner Organization(s): 
Award Number: 
1222496
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Full Description: 

Boston University, Education Development Center, Inc., and St. Olaf College are collaborating on Assessing Secondary Teachers' Algebraic Habits of Mind (ASTAHM) to develop instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. MHoM is a critical component of mathematical knowledge for teaching at the secondary level. Recognizing the need for a scientific approach to investigate the ways in which MHoM is an indicator of teacher effectiveness, the partnership is researching the following questions:

1. How do teachers who engage MHoM when doing mathematics for themselves also bring MHoM to their teaching practice?

2. How are teachers' engagement with MHoM and their use of these habits in teaching related to student understanding and achievement?

To investigate these questions, ASTAHM is developing two instruments: a paper and pencil (P&P) assessment and an observation protocol that measure teachers' knowledge and classroom use, respectively, of MHoM.

The work is being conducted in two phases: (1) an instrument-refinement and learning phase, and (2) an instrument-testing and research phase. Objectives of Phase 1 are to gather data to refine the project's existing instruments and to learn about the bridge factors that impact the relationship between teachers' knowledge and classroom use of MHoM. Specific research activities include: administering the pilot P&P assessment to 40 teachers, videotaping Algebra instructions of 8 teachers, performing initial testing and refinement of the instruments, and using the data to analyze the bridge factors. Phase 2 is a large-scale study involving field-testing the P&P assessment with 200 teachers, videotaping 20 teachers and studying them using the observation protocol, collecting achievement data from 3000 students, and checking P&P content validity with 200 mathematicians. With these validated instruments in hand, the project will then conduct an investigation into the above research questions. Lesley University's Program Evaluation and Research Group (PERG) is the external evaluator. PERG is assessing ASTAHM's overall success in developing valid and reliable instruments to investigate the extent to which a relationship exists between teachers' MHoM and their classroom practice, as well as student achievement. Evaluators are also investigating whether users' coding guides for both instruments enable field-testers to effectively use and adequately score them.

This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement. The MHoM construct is closely aligned with the Common Core State Standards-Mathematics (CCSS-M); especially its Standards for Mathematical Practice. For example, both place importance on seeking and using mathematical structure. Thus the instruments this project produces can act as pre- and post-measures of the effectiveness of professional development programs in preparing teachers to implement the CCSS-M. Mathematics teacher knowledge at the secondary level is an understudied field. Through analyses of the practices and habits of mind that teachers bring to their work, ASTAHM is developing instruments that can be used to shed light on effective secondary teaching.


Project Videos

2019 STEM for All Video Showcase

Title: Studying Teachers' Mathematical Habits of Mind

Presenter(s): Sarah Sword, Eden Badertscher, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2017 STEM for All Video Showcase
Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Sarah Sword, Courtney Arthur, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2016 STEM for All Video Showcase

Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Ryota Matsuura, Al Cuoco, Glenn Stevens, & Sarah Sword


Developing Principles for Mathematics Curriculum Design and Use in the Common Core Era

This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics. These principles are intended for: (1) curriculum developers; (2) professional development designers, to help teachers better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM.

Award Number: 
1222359
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Project Evaluator: 
Horizon Research
Full Description: 

This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics (CCSSM). These principles are intended for: (1) curriculum developers to help in the design of curriculum materials; (2) professional development designers and local instructional leaders, to help teachers understand and better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM. The study addresses the following research questions:

1. What design features of materials support effective instructional design?

2. What teacher and district characteristics support effective instructional design?

3. How do teachers use materials to design instruction that addresses the new CCSSM?

4. What design practices lead to instruction that addresses the progressions and practices in the CCSSM?

A sample of teachers across grades 6 - 8 and their instructional leaders will be selected, up to a maximum of 72 teachers. The sample of teachers is purposefully diverse in terms of demographic, geographic, and curriculum contexts. The curricula include NSF-funded programs as well as commercially-developed programs. The ways teachers understand and access curriculum resources in fully digital environments as well as more conventional media will be studied. Partnering institutions include the University of Rochester, Michigan State University, Western Michigan University, and Washington State University Tri-Cities.

The data collection includes surveys, assessments of teachers' mathematical knowledge for teaching, observations of teachers' use and enactment of curriculum materials, analyses of student text and associated teacher resource materials, and teacher logs. These data are used to test conjectures about: (1) how curriculum materials, particularly the teacher resources, can be better designed to help teachers productively design instruction, especially with regard to incorporating the mathematical practices in the CCSSM; and (2) how teachers can be better supported to understand and use curriculum resources. The project evaluation includes formative and summative components, providing information and assistance to ensure that the project addresses its stated goals and employs rigorous methodology. Multiple methods are being used to collect evaluation data, including observations, interviews, and document review.

The deliverables are aimed at audiences who can impact large numbers of teachers and students, such as curriculum developers, designers of professional development, and researchers. The deliverables include: (1) guidelines for curriculum developers that are intended to make curriculum resources more transparent and accessible; (2) guidelines for instructional leaders to support teachers to use curriculum materials to design instruction that addresses the rigorous features of the CCSSM, and (3) refined instruments for studying teachers' curricular practices.

SimScientists Assessments: Physical Science Links

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

Lead Organization(s): 
Award Number: 
1221614
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The assessment strand consists of multilevel (increased thinking levels) assessment designs grounded on evidence-centered principles that target practices and key disciplinary conceptual schemes, such as matter, motion, energy, and waves identified in the National Research Council report "A Framework for K-12 Science Education: Practices, Crosscutting Knowledge, and Core Ideas". The assessment model vertically links simulations (interactive with feedback to students, coaching, and reflection); curriculum-embedded assessments for formative use; unit benchmark assessment for interim summative purposes; and a set of "signature tasks" (short-term simulations on recurring problem types). Members of the Advisory Board and an Assessment Review Panel actively participate in the development and implementation of this effort. Heller Research Associates is the external evaluator. The evaluation plan addresses both formative and summative aspects.

The project's theory of action is based on model-based learning and evidence-centered design reflective of the notion that the construct of science is multidimensional, requiring (a) understanding how the components of a science conceptual system interact to produce behaviors of the system; and (b) the use of inquiry practices to investigate the dynamic behaviors and underlying components' interactions of the system. A total of eight research and development questions guide the scope of work. The questions focus on: (a) validity (substantive and technical quality) of the individual simulation assessments; and (b) classroom implementation (feasibility, fidelity, utility). The methodology for test construction and revision follows the testing standards of major professional organizations (i.e., American Educational Research Association, American Psychological Association, and National Council of Measurement in Education) through three development phases. Phase I (Assessment Development) focuses on the alignment, quality, and prototype testing, including leverage and modification of prior work, and design of new assessment suites and signature tasks. Phase II (Pilot and Validation Studies) deals with the testing of all assessments, research instruments, and study methods. Phase III (Cross-Validation Studies) substantiates the multilevel integration assessment model, cross-validates the assessments piloted in Phase II, and establishes a reliable argument that the assessments measure the intended content and inquiry practices suitable for use in district and state-level assessment systems.

Expected outcomes are: (1) a research-informed and field-tested physical science simulations-based assessment model with high potential for extended use in middle school grades; and (2) a policy brief that provides recommendations for integrating assessments into districts and state large-scale, multi-level, balanced science assessments.

Videocases for Science Teaching Analysis Plus (ViSTA Plus): Efficacy of a Videocase-Based, Analysis-of-Practice Teacher Preparation Program

The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Lead Organization(s): 
Award Number: 
1220635
Funding Period: 
Wed, 08/01/2012 to Sat, 06/30/2018
Full Description: 

Prior studies have demonstrated the positive impact of content-specific videocases of other teachers' practice on science content knowledge and ability to analyze teaching when the videocases are incorporated in the methods courses for preservice teachers. Similar outcomes occurred for experienced, inservice teachers in a year-long professional development that included analyzing video of their own and others' teaching, and these teachers changed their practice in ways that influenced students' science learning. The new ViSTA Plus study explores implementation of a 2-year program for preservice/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?"

ViSTA Plus presents a distinctive version of practice-based teacher education, one that immerses teachers into practice via scaffolded, collaborative analyses of videocases - starting with analysis of other teachers' videocases and moving to collaborative analysis of teachers' own videocases. The ViSTA Plus conceptual framework supports teachers in using Student Thinking and Science Content Storyline Lenses to analyze science teaching and in using a set of teaching strategies that support use of each of these lenses in their planning and teaching. Through this analysis work, teachers deepen their science content knowledge, develop the ability to analyze teaching and learning, and improve their teaching and their students' learning. The current study incorporates a quasi-experimental design to compare the impact of the ViSTA Plus program to that of traditional teacher preparation programs when implemented at universities that serve diverse populations, especially Native American, Hispanic, and low-SES students. Teacher measures are assessing science content knowledge (pre, mid, and posttests), ability to analyze science teaching and learning (pre, mid, and post video analysis tasks), and teaching practice (videorecorded lessons during student teaching and first year of teaching). Elementary students' science achievement is being assessed using pre-post unit tests during student teaching and the first year of teaching.

The study design addresses a gap in the research on preservice teacher preparation by following the pathway of program influence from teacher learning to teaching practice to student learning, and accomplishes this in the context of ViSTA Plus, an alternative, practice-based approach to teacher preparation that embeds all phases of teacher learning in practice from the beginning. Partner universities in this effort are eager to reimagine the traditional teacher preparation sequence, offering new models for the field. The project is producing science-specific, analysis-of-practice materials (videocases, methods course guides, study group guides) to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Exploring the Efficacy of Engineering is Elementary (E4)

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.

Lead Organization(s): 
Award Number: 
1220305
Funding Period: 
Sat, 09/15/2012 to Fri, 08/31/2018
Full Description: 

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The rigorous level of evidence that is developed in this study has significant utility as a support for the kinds of elementary engineering curricula that are needed as the Next Generation Science Standards come online and emphasize engineering design. The study is a randomized control trial where the assignment of teachers will be to the EiE curricular materials or to a counterfactual condition, the use of more standard design engineering curricular materials. The project studies the impact of the use of the curriculum on student learning and on teachers' use of the curriculum in a fidelity of implementation study to determine the core elements of the curriculum that support successful use. The study examines the implementation of the curricular materials in a number of contexts to more fully understand the conditions under which they work best and to explicate what aspects of such project-based inquiry materials most support student learning.

This study uses a randomized cluster trial to examine the efficacy of the EiE curriculum across 75 schools in the treatment and 75 schools in the control group samples. Two teachers per school are included in one treatment/control condition per school. Outcome measures for students include performances on project-specific measures that have been examined for technical quality of validity and reliability. A set of additional research-based survey instruments validated for use in the EiE context are also used to collect data about students' attitudes, perceptions, interest and motivation toward science and engineering. A robust fidelity of implementation research plan is being implemented that will include teachers surveys, pre and post assessments, teacher logs, as well as student engineering journals and student work from classroom implementation. The fidelity of implementation is further studied with forty treatment and ten control teachers through classroom observations and interviews.

The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level. Engineering design has not been emphasized in the elementary classroom, lagging behind instruction in science with which teachers are more familiar. The results of this study inform practitioners and policy makers about what works, for whom and under what conditions. Information about the different contexts in which the curriculum has been implemented supports the dissemination of evidence-based research and development practices to strengthen STEM learning for all students.

Constructing and Critiquing Arguments in Middle School Science Classrooms: Supporting Teachers with Multimedia Educative Curriculum Materials

This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.

Project Email: 
Award Number: 
1119584
Funding Period: 
Thu, 09/01/2011 to Sun, 08/31/2014
Project Evaluator: 
Naomi Hupert
Full Description: 

This project between Lawrence Hall of Science and Boston College is developing Earth and Space Science multimedia educative curriculum materials (MECM) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The MECMs include videos, voice-over narratives, diagrammatic representations, images of student writings, and text. The PIs are investigating the impact of the MECMS on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question, with four sub questions, focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments. The four sub questions are: What factors impact teachers' implementation of argumentation instruction in the classroom? How can MECMs be designed to positively impact teachers' beliefs and their pedagogical content knowledge (PCK) about argumentation? What is the relationship between teachers' beliefs about the value of argumentation and their implementation of argumentation in the classroom? What impact do MECMs have on teachers' beliefs and PCK?

A mixed method approach is being used to assess teachers' beliefs and pedagogical content knowledge. The PIs are developing and pilot testing teachers' beliefs about scientific argumentation. They will use an iterative design process for the MECMs that will involve 50 teachers. Twenty-five phone interviews will be conducted to investigate factors that impact teachers' implementations of scientific argumentation. Three iterative cycles of design and testing include focus groups, a pilot of the MECMs in six classrooms, and a national field test of 30 classrooms. One hundred teachers will field test the assessment followed by collection of six case studies and data analyses. The project's formative and summative evaluations include monitoring and providing feedback for all activities, and assessments of program implementation and impact.

Teachers need support using field tested multimedia educative materials (MECMs) in learning and delivering science content using a scientific argumentation process. By delivering and engaging the teaching and learning process through iterative design of Earth and Space Science multimedia educative curriculum materials, this project would provide, if successful, teachers and students with the necessary literacy and knowledge about scientific argumentation. The MECMs and approach has the potential for broad implementation in middle schools and beyond for delivering Earth and Space science material to support and teach scientific argumentation.

Morehouse College DR K-12 Pre-service STEM Teacher Initiative

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs  

Lead Organization(s): 
Award Number: 
1119512
Funding Period: 
Fri, 07/15/2011 to Sat, 06/30/2018
Project Evaluator: 
Melissa K. Demetrikopoulos
Full Description: 

Morehouse College proposed a research and development project to recruit high school African American males to begin preparation for secondary school science, technology, engineering and mathematics(STEM) teaching as a career. The major goal of the program is to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs including: (a) How do students who remain in STEM education differ from those who leave and how do these individual factors (e.g. student preparation, self-efficacy, course work outcomes, attitudes toward STEM/STEM education, connectivity to STEM/STEM education communities, learning styles, etc) enhance or inhibit interest in STEM teaching among African American males? (b) What organizational and programmatic factors (e.g. high school summer program, Saturday Academy, pre-freshman program, summer research experience, courses, enhanced mentoring, cyber-infrastructure, college admissions guidance, leadership training, instructional laboratory, program management, faculty/staff engagement and availability, Atlanta Public Schools and Morehouse College articulation and partnership) affect (enhance or inhibit) interest in STEM teaching among African American males?

This pre-service program for future secondary STEM teachers recruits promising African American male students in eleventh grade and prepares them for entry into college.  The program provides academic guidance and curriculum-specific activities for college readiness, and creates preparation for secondary science and math teaching careers.   This project is housed within the Division of Science and Mathematics at Morehouse College and engages in ongoing collaboration with the Atlanta Public School (APS) system and Fulton County School District (FCS). The APS-FCS-MC collaboration fosters access and success of underrepresented students through (a) early educational intervention practices; (b) enhanced academic preparation; and (c) explicit student recruitment. 

The program consists of six major program components: High School Summer Program; Saturday Academy I, II, and III; Pre-Freshman Summer Program; and Summer Research Experience, which begins in the summer between the student’s junior and senior years of high school and supports the student through his sophomore year of college.  To date, collaborations between education and STEM faculty as well as between Morehouse, APS, and FCS faculty have resulted in development and implementation of all six program components.   Students spent six weeks in an intensive summer program with a follow-up Saturday Academy during their senior year before formally beginning their academic careers at Morehouse College. The program integrates STEM education with teacher preparation and mentoring in order to develop secondary teachers who have mastery in both a STEM discipline as well as educational theory. 

This pre-service program for future teachers recruited promising eleventh grade African American male students from the Atlanta Public School District to participate in a four-year program that will track them into the Teacher Preparation program at Morehouse College. The research focuses on the utility and efficacy of early recruitment of African American male students to STEM teaching careers as a mechanism to increase the number of African American males in STEM teaching careers.

Cluster Randomized Trial of the Efficacy of Early Childhood Science Education for Low-Income Children

The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).

Project Email: 
Award Number: 
1119327
Funding Period: 
Mon, 08/15/2011 to Mon, 07/31/2017
Project Evaluator: 
Brian Dates, Southwest Counseling Services
Full Description: 

The research goal of this project is to evaluate whether an early childhood science education program, Head Start on Science, implemented in low-income preschool settings (Head Start) produces measurable impacts for children, teachers, and parents. The study is being conducted in eight Head Start programs in Michigan, involving 72 classrooms, 144 teachers, and 576 students and their parents. Partners include Michigan State University, Grand Valley State University, and the 8 Head Start programs. Southwest Counseling Solutions is the external evaluator.

The study is determining the efficacy of the Head Start on Science curriculum in two models, one in which 72 teachers participate in professional development activities (the intervention), and another in which 72 teachers receive the curriculum and teachers' guide but no professional development (the control). The teacher study is a multi-site cluster randomized trial (MSCRT) with the classroom being the unit of randomization. Four time points over two years permit analysis through multilevel latent growth curve models. For teachers, measurement instruments include Attitudes Toward Science (ATS survey), the Head Start on Science Observation Protocol, the Preschool Classroom Science Materials/Equipment Checklist, the Preschool Science Classroom Activities Checklist, and the Classroom Assessment Scoring System (CLASS). For students, measures include the "mouse house problem," Knowledge of Biological Properties, the physics of falling objects, the Peabody Picture Vocabulary Test-Fourth Edition, the Expressive Vocabulary Test-2, the Test of Early Mathematics Ability-3, Social Skills Improvement System-Rating Scales, and the Emotion Regulation Checklist. Measures for parents include the Attitudes Toward Science survey, and the Community and Home Activities Related to Science and Technology for Preschool Children (CHARTS/PS). There are Spanish versions of many of these instruments which can be used as needed. The external evaluation is monitoring the project progress toward its objectives and the processes of the research study.

This project meets a critical need for early childhood science education. Research has shown that very young children can achieve significant learning in science. The curriculum Head Start on Science has been carefully designed for 3-5 year old children and is one of only a few science programs for this audience with a national reach. This study intends to provide a sound basis for early childhood science education by demonstrating the efficacy of this important curriculum in the context of a professional development model for teachers.

Pages

Subscribe to Quantitative