Quantitative

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Retention of Early Algebraic Understanding

The project will use a quasi-experimental design to explore students' knowledge of core algebraic concepts in middle grades (grade 6), one year after their completion of 3-year, grades 3-5 early algebra intervention. The research questions are: (1) how well students who received a specific intervention retain their understanding of algebraic concepts in future years; and (2) whether and how the intervening year of regular classroom instruction in grade 6 influences the algebra understanding of both intervention and comparison students.

Lead Organization(s): 
Award Number: 
1550897
Funding Period: 
Tue, 09/01/2015 to Wed, 08/31/2016
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by prek-12 students and teachers through research and development of innovative resources, models and tools. While national and state standards provide important benchmarks for algebra learning beginning in kindergarten, they do not provide rigorously tested models by which these algebra standards might be attained in elementary grades classrooms in ways that will ensure further mathematics achievement. This work will addresses this need by closely documenting the effectiveness of models and tools, developed in our previous work, for early algebra education

The proposed project will use a quasi-experimental design to explore students' knowledge of core algebraic concepts in middle grades (grade 6), one year after their completion of 3-year, grades 3-5 early algebra intervention. The project will also study the algebraic knowledge of a comparison group of students. The research questions are: (1) how well students who received a specific intervention retain their understanding of algebraic concepts in future years; and (2) whether and how the intervening year of regular classroom instruction in grade 6 influences the algebra understanding of both intervention and comparison students.

Collaborative Math: Creating Sustainable Excellence in Mathematics for Head Start Programs

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

Lead Organization(s): 
Award Number: 
1503486
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. CM content will focus on nine topics emphasized in preschool mathematics, including sets, number sense, counting, number operations, pattern, measurement, data analysis, spatial relationships, and shape. These concepts are organized around Big Ideas familiar in early math, are developmentally appropriate and foundational to a young child's understanding of mathematics. The project addresses the urgent need for improving early math instruction for low-income children. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach. Likewise, the project will involve teachers, teacher aides, and administrators through a whole school approach in PD, which research has shown is more effective than involving only lead teachers. Through several phases of development and research, the project will investigate the contributions of project components on increases in teacher knowledge and classroom practices, student math knowledge, and overall implementation. The project will impact approximately 200 Head Start (HS) teaching staff, better preparing them to provide quality early math experiences to more than 3,000 HS children during the project period. Upon the completion of the project, a range of well-tested CM materials such as resource books and teaching videos will be widely available for early math PD use. Assessment tools that look at math knowledge, attitudes, and teacher practice will also be available. 

The project builds on Erikson Institute research and development work in fields of early math PD and curriculum. Over a 4-year span, project development and research will be implemented in 4 phases: (1) adapting the existing CM and research measures for HS context; (2) conducting a limited field study of revised CM in terms of fidelity and director, teacher/aide, and student outcomes, and study of business as usual (BAU) comparison groups; (3) a study of the promise of the intervention promise with the phase 3 BAU group (who offered baseline in phase 2) and (4) a test of the 2nd year sustainability intervention with phase 3 treatment group. The teacher and student measures are all published, frequently used measures in early childhood education and will be piloted and refined prior to full implementation. The project is a partnership between Erikson, SRI, and Chicago Head Start programs. Project research and resources will be widely disseminated to policy makers, researchers, and practitioners.

Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

Lead Organization(s): 
Award Number: 
1503451
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The 3-year exploratory project, Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics, will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). While mathematics problem-solving skills are critical in all areas of daily life, many students with LDM do not acquire key math concepts such as additive and multiplicative reasoning in a proficient manner during the early school years. In fact, about 5-10% of school-age children are identified as having mathematical disabilities which might cause them to experience considerable difficulties in the upper grades and experience persistent academic, life, and work challenges. Despite the proliferation of web-based mathematical games for early learners, there are very few programs or tools that target growth in the conceptual understanding of fundamental mathematical ideas, which is essential in enabling young students with LDM to perform proficiently in mathematical and everyday contexts. COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. COMPS-A will also make the reasoning and underlying mathematical model more explicit to them, and the tool's flexibility will facilitate group or one-on-one instruction in regular classroom settings, in other sessions during or after the school day, and at home. COMPS-A addresses a significant practical issue in today's classrooms by providing individualized and effective RtI intervention programs for students with LDM.

COMPS-A program represents a mathematical model-based problem-solving approach that emphasizes understanding and representation of mathematical relations in algebraic equations and, thus, will support growth in generalized problem-solving skills.COMPS-A will achieve the following objectives: 1) Create the curriculum content, screen design, and a teacher's manual for all four modules in the area of additive word problem solving; 2) Design and develop the cross-platform computer application that can be ported as a web-based, iPad, Android, or Windows app, and this flexibility will make the program accessible to all students; and 3) Conduct small-scale single subject design and randomized controlled trial studies to evaluate the potential of COMPS-A to enhance students' word problem-solving performance. The following research questions will be resolved: (1) What is the functional relationship between the COMPS-A program and students' performance in additive mathematics problem solving? (2) What is the teacher's role in identifying students' misconceptions, alternative reasoning, and knowledge gaps when students are not responsive to the intervention program? (3) What are the necessary instructional scaffolds that will address students' knowledge gaps and therefore facilitate the connection between students' conceptual schemes and the mathematical models necessary for problem solving in order to promote meaningful understanding and construction of additive reasoning? A functional prototype of the COMPS-A will be developed followed by a single-subject design study with a small group of students with LDM to field-test the initial program. Finally, a pretest-posttest, comparison group design with random assignment of participants to groups will then be used to examine the effects of the two intervention conditions: COMPS-A and business as usual. An extensive dissemination plan will enable the project team to share results to a wider community that is responsible for educating all students and, especially, students with LDM.

 

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Science Teachers Learning from Lesson Analysis (STeLLA): High School Biology

This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution.

Lead Organization(s): 
Award Number: 
1503280
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution. These are content areas that have been shown to be difficult for students to learn, and difficult for teachers to teach. The professional development model will include: a) a summer institute where teachers gain new knowledge and skills in biology and learn to analyze videotaped lessons; b) opportunities to teach project-developed lessons during the academic year; and c) study group sessions during the academic year where participating teachers analyze videoclips of their own teaching.

The project will design, develop, and test a teacher professional development model that is based on a previously developed approach that has been shown to be effective among elementary school teachers. It is hypothesized that the newly developed program will have a positive impact on the science achievement of high school students, that it will improve teacher science content knowledge and classroom practice, and that the effects on student outcomes will be equitable across student demographic variables. To test thee hypotheses, the project will employ a quasi-experimental research approach in which teachers will serve as their own comparison groups in a cohort control design. Hierarchical linear modeling will be used to differentiate the effects of variances in teacher content knowledge and pedagogical content knowledge, student demographic variables, and school factors. It is anticipated that the project will find evidence that the proposed approach to biology teacher professional development has the potential to close the achievement gaps among student populations.

Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and Fractional Reasoning to Improve Students' Preparedness for Middle School Mathematics

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics.

Lead Organization(s): 
Award Number: 
1503206
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. The context for the study is grades 3-5 teachers in Aurora Public Schools. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics. It includes a summer workshop and academic year follow-up including teacher collaboration. The project provides tools for capitalizing on successful, school-based research for promoting teachers' buy-in, adoption, and sustaining of student-adaptive pedagogy. The project also includes measurement of student understanding of the concepts. An extensive plan to share tools and resources for teachers and instructional coaches (scalable to district/state levels) and of research instruments and findings, will promote sharing project outcomes with a wide community of stakeholders (teachers, administrators, researchers, parents, policy makers) responsible for students' growth. This is a Full Design & Development project within the DRK-12 Program's Learning Strand. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project aims to implement and study a professional development intervention designed to shift upper-elementary teachers' mathematics teaching toward a constructivist approach, called student-adaptive pedagogy (AdPed), which adapts teaching goals and activities based on students' conceptions and experiences. The project focuses on multiplicative and fractional reasoning--critical for students' success in key areas of middle school mathematics (e.g., ratio, proportion, and function). The project seeks to design an instrument for measuring teachers' implementation of AdPed, a clinical interview rubric for students' multiplicative reasoning and then an analysis of teachers' content knowledge and the implementation of AdPed following the professional development. The research design is rooted in an innovative, cohesive framework that integrates four research-based components: (i) a model of mathematics learning and knowing, (ii) models of progressions in students' multiplicative and fractional reasoning, (iii) a model of teaching (AdPed) to promote such learning, and (iv) a mathematics teacher development continuum. Capitalizing on successful preliminary efforts in the Denver Metro area to refine a PD intervention and student-adaptive tools that challenge and transform current practices, the project will first validate and test instruments to measure (a) teacher growth toward adaptive pedagogy and (b) students' growth in multiplicative reasoning. Using these new instruments, along with available measures, the project will then promote school-wide teacher professional development (grades 3-5) in multiple schools in an urban district with large underserved student populations and study the professional development benefits for teacher practices and student outcomes. The mixed methods study includes classroom-based data (e.g., video analysis, lesson observations, teacher interviews) and measures of students' multiplicative reasoning specifically and mathematical understanding generally.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Fri, 07/31/2020
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


Pages

Subscribe to Quantitative