Design & Development

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Developing a Generalized Storyline that Organizes the Supports for Evidence-based Modeling of Long-Term Impacts of Disturbances in Complex Systems

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems.

Lead Organization(s): 
Award Number: 
1813802
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences. There are a wide variety of complex systems principles at work in disturbance ecology. This project serves as a starting point on supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis). These same complex systems principles can be applied to other scientific phenomena, such as homeostasis and the spread of infectious disease. This project will bring the excitement of Luquillo Long Term Ecological Research (LTER) to classrooms outside of Puerto Rico, and has a special emphasis on low performing, low income, high minority schools in Chicago. Over 6000 students will directly benefit from participation in the research program. The units will be incorporated into the Journey to El Yunque web site for dissemination throughout Chicago Public Schools (CPS) and the LTER network. The units will be submitted for review at the Achieve network, thus extending the reach to teachers around the country. The project will impact science teachers and curriculum designers through an online course on storyline development. This project aims to improve students' ability to engage in argument from evidence and address what the literature has identified as a significant challenge, namely the ability to evaluate evidence. Researchers will also demonstrate how it is possible to make progress on implementing Next Generation Science Standards in low performing schools. Through the web-based platform, these results can be replicated across many other school districts.

Researchers will to use the scientific context of the LTER program to develop a generalized storyline template for using evidence-based modeling to teach basic principles of disturbance ecology. Though a co-design process with middle school teachers in CPS, researchers will test the application of learning principles to a generalized storyline template by developing and evaluating three units on disturbance ecology - one life science, one Earth system science, and one physical science. Through a task analysis, researchers have identified three key areas of support for students to be successful at explaining how a system will respond to a disturbance. First, students need to be able to record evidence in a manner that will guide them to developing their explanation. Causal model diagrams have been used successfully in the past to organize evidence, but little is known about how students can use their causal diagrams for developing explanations. Second, there have been a wide variety of scaffolds developed to support the evaluation of scientific arguments, but less is known about how to support students in organizing their evidence to produce scientific arguments. Third, evidence-based modeling and scientific argumentation are not tasks that can be successfully accomplished by following a recipe. Students need to develop a task model to understand the reason why they are engaged in a particular task and how that task will contribute to the primary goal of explanation.

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Wilson)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Lead Organization(s): 
Award Number: 
1813538
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Science Communities of Practice Partnership

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

Award Number: 
1813012
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable. The working model involves reciprocal communities of practice, which are groups of teachers, leaders and administrators that focus on practical tasks and how to achieve them across these stakeholder perspectives. The project will provide evidence about the specific components of the professional development model that support sustainable improvement in science teaching, will test the ways that teacher ownership and organizational conditions mediate instructional change, and will develop four tools for facilitating the teacher learning and the accompanying capacity building. In this way, the project will produce practical knowledge and tools necessary for other school districts nationwide to create professional learning that is tailored to their contexts and therefore sustainable.

This study posits that communication among district teachers, teacher leaders, and administrators, and a sense of ownership for improved instruction among teachers can support sustainable change. As such, it tests a model that fosters communication and ownership through three reciprocal communities of practice--one about district leadership including one teacher per school, coaches and university faculty; another about lesson study including teachers, coaches and faculty; and a third about instructional innovation including teachers and administrators, facilitated by coaches. The research design seeks to inform what the communities of practice add to the effects in a quasi-experimental study involving 72 third to fifth grade teachers and 6500 students in four urban school districts. Mixed methodologies will be used to examine shifts in science teaching over three years, testing the professional development model and the mediating roles of reform ownership and organizational conditions.

Highly Adaptive Science Simulations for Accessible STEM Education

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.

Lead Organization(s): 
Award Number: 
1814220
Funding Period: 
Sun, 04/15/2018 to Wed, 03/31/2021
Full Description: 

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities. The PhET Interactive Simulations project at the University of Colorado Boulder and collaborators at Georgia Tech, with expertise in accessible technology and design, will form the project team. The project team will conduct design-based implementation research, where adaptive accessibility features for interactive science simulations are developed through co-design with students with disabilities and their teachers. Students will include those with dyslexia, visual impairments or blindness, and students with intellectual and developmental disabilities, ranging from 5th grade through high school, and recent high school graduates. The adaptive accessibility features will be implemented within a set of PhET interactive science simulations, and allow students with disabilities to access the science simulations with alternative input devices (such as keyboards, switches, and sip-and-puff devices), alter the visual display of the simulations (changing color contrast, zoom and enlarge, and simplify), hear different auditory representations of the visual display (descriptions, sonification, and text-to-speech), and control the rate of simulated events. All features will be capable of being turned on or off and modified on-the-fly by teachers or students through a global control panel that includes curated feature sets, resulting in highly flexible, highly accessible, interactive learning resources.

PhET simulations are widely used in US classrooms, evidence-based, aligned with standards, and highly engaging and effective learning resources. With the proposed highly adaptive features and supporting resources, teachers will be able to quickly adapt the PhET simulations to meet the needs of many students with disabilities, simplifying the task of creating differentiated learning opportunities for students and supporting students with disabilities to engage in collaborative learning - a foundational component of a high-quality STEM education - alongside their non-disabled peers. To research, design, and develop the adaptive features and investigate their use by students, project team members will co-teach in classrooms with students with disabilities and conduct co-design activities with students, where students engage in design thinking to help design and refine the adaptive features to meet identified accessibility needs (their own and those of their peers). In addition, interviews with individual students with and without disabilities will also be conducted, to test early prototypes of individual features, to later refine the layering of the many different features, and to ensure the presence of adaptive features does not negatively impact traditional use of the simulations. The proposed work also includes surveys of teachers and students and analysis of teacher use, to refine global control features, develop curated feature sets, and develop supporting teacher resources. The project will address key questions at the heart of educational design for students with diverse needs, including how to make adaptive features that support student achievement of specific learning goals. The project will use design-based implementation research, with significant co-designing with students with disabilities (including visual impairments, cognitive disabilities, or dyslexia), interviews, case studies, and classroom implementation to design and evaluate the accessibility features. This will inform new models and theories of learning with technology. The project will investigate: 1) How students engage with, use, and learn from adaptive accessibility features, 2) how adaptive accessibility features can be designed to layer harmoniously together in a learning resource, and 3) how to effectively support access to rich, dynamic feature controls and curated feature sets for intuitive classroom use by students and teachers. The project will produce 8 PhET simulations with adaptive accessibility features and supporting teacher resources. The foundational research knowledge will result in effective design and implementation of adaptive accessibility features through the analysis of student engagement, usability, and learning from accessible simulations. Additionally, the project will provide technical infrastructure, exemplars, and software for use by other STEM education technology developers. The project team will work together to create a deep understanding of how to design adaptive science simulations with practical, usable, effective accessibility, so that learners with diverse needs can advance their science content knowledge and participate in science practices alongside their peers. The work has great potential to transform STEM learning for students with disabilities and to make simulations more effective for all learners. Results will provide insight into the effectiveness of accessible simulation-based activities and their corresponding teacher materials in engaging students in science practices and learning in the classroom.

Strengthening Data Literacy Across the Curriculum

This project will develop a set of statistics learning materials, with data visualization tools and an applied social science focus, to design applied data investigations addressing real-world socioeconomic questions with large-scale social science data. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students and engage students with content that resonates with their interests.

Award Number: 
1813956
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

The Strengthening Data Literacy across the Curriculum (SDLC) project seeks to significantly enhance the learning and teaching of Science, Technology, Engineering, and Mathematics (STEM) high school students and teachers through the development of resources, models, and tools. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students. The project will target students outside mathematics and statistics classes who seldom have opportunities formally make sense of large-scale quantitative data. The population for the initial study will be humanities/social studies and mathematics/statistics high school teachers and their classes. The focus on social justice themes are intended to engage students with content that resonates with their interests. This strategy has the potential to demonstrate ways to provide rich, meaningful statistical instruction to a population that seldom has the opportunity for such learning. By capturing students' imagination and interest with social justice themes, this project has the potential of high impact in today's society where understanding and preparing statistical reports are becoming more critical to the general populace.

This project will build on prior theory and research to develop a new set of statistics learning materials, with data visualization tools and an applied social science focus to design three 2-week applied data investigations (self-contained modules) addressing real-world socioeconomic questions with large-scale social science data. The modules will be aligned with the high school Common Core State Standards for Mathematics and key statistical content for college students. The purpose of the study is to strengthen existing theories of how to design classroom learning materials to support two primary sets of outcomes for high school students, particularly among those historically underrepresented in STEM fields: 1) stronger understandings of important statistics concepts and data analysis practices, and 2) interest in statistics and working with data.  The modules will engage students in a four-step investigative process where they will (1) formulate questions that can be answered with data; (2) design and implement a plan to assemble appropriate data; (3) use numerical and graphical methods to explore the data; and (4) summarize conclusions relating back to the original questions and citing relevant components of the analysis that support their interpretation and acknowledging other interpretations.

The project will employ a Design-Based Implementation Research (DBIR) design using both quantitative and qualitative data to determine results of targeted outcomes (noted above) as well track whether there is any evidence to support the conjectures that key module components directly impact targeted student outcomes. Starting with a well-defined, preliminary conceptual framework for the study, the project team will conduct four cycles of iterative design and testing of the proposed SDLC modules over two academic years, with each cycle occurring during a fall or spring semester.

Improving Multi-Dimensional Assessment and Instruction: Building and Sustaining Elementary Science Teachers' Capacity through Learning Communities (Collaborative Research: Lehman)

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813938
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its main goal is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science. The three dimensions will include disciplinary core ideas, science and engineering practices, and crosscutting concepts. These dimensions are described in the Framework for K-12 Science Education (National Research Council; NRC, 2012), and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The project will work closely with teachers to co-develop usable assessments and rubrics and help them to learn about three-dimensional assessment and instruction. Also, the project will work with teachers to test the developed assessments in diverse settings, and to create an active, online community of practice.

The two research questions will be: (1) How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?; and (2) In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers' formative assessment practices to support multi-dimensional science instruction? The research and development components of this project will produce assessments and rubrics, which can directly impact students and teachers in the districts and states that have adopted the NGSS, as well as those that have embraced the vision of science teaching and learning embodied in the NRC Framework. The project will consist of five major tasks. First, the effort will iteratively develop assessments and rubrics for formative use, using an evidence-centered design approach. Second, it will collect data from evidence-based revision and redesign of the assessments from teachers piloting the assessments and rubrics, project cognitive laboratory studies with students, and an external review of the assessments design products. Third, it will study teachers' classroom use of assessments to understand and document how they blend assessment and instruction. The project will use pre/post questionnaires, video recordings, observation field notes, and pre/post interviews. Fourth, the study will build the capacity of participating teachers. Teacher Collaborators (n=9) will engage in participatory design of the assessment tasks and act as technical assistants to the overall implementation process. Teacher Implementers (n=15) will use the assessments formatively as part of their instructional practice. Finally, the work will develop a community of learners through the development of a technical assistance infrastructure, and leveraging teacher expertise to formatively assess students' work, using the assessments designed to be diagnostic and instructionally informative. External reviewers and an advisory board will provide formative feedback on the project's processes and summative evaluation of the project's results. The main outcomes of this endeavor will be prototypes of elementary science multi-dimensional assessments and new knowledge for the field on the underlying theory for developing teachers' capacity for engaging in multi-dimensional science instruction, learning, and assessment.

Improving Multi-Dimensional Assessment and Instruction: Building and Sustaining Elementary Science Teachers' Capacity through Learning Communities (Collaborative Research: Pellegrino)

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

Partner Organization(s): 
Award Number: 
1813737
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its main goal is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science. The three dimensions will include disciplinary core ideas, science and engineering practices, and crosscutting concepts. These dimensions are described in the Framework for K-12 Science Education (National Research Council; NRC, 2012), and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The project will work closely with teachers to co-develop usable assessments and rubrics and help them to learn about three-dimensional assessment and instruction. Also, the project will work with teachers to test the developed assessments in diverse settings, and to create an active, online community of practice.

The two research questions will be: (1) How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?; and (2) In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers' formative assessment practices to support multi-dimensional science instruction? The research and development components of this project will produce assessments and rubrics, which can directly impact students and teachers in the districts and states that have adopted the NGSS, as well as those that have embraced the vision of science teaching and learning embodied in the NRC Framework. The project will consist of five major tasks. First, the effort will iteratively develop assessments and rubrics for formative use, using an evidence-centered design approach. Second, it will collect data from evidence-based revision and redesign of the assessments from teachers piloting the assessments and rubrics, project cognitive laboratory studies with students, and an external review of the assessments design products. Third, it will study teachers' classroom use of assessments to understand and document how they blend assessment and instruction. The project will use pre/post questionnaires, video recordings, observation field notes, and pre/post interviews. Fourth, the study will build the capacity of participating teachers. Teacher Collaborators (n=9) will engage in participatory design of the assessment tasks and act as technical assistants to the overall implementation process. Teacher Implementers (n=15) will use the assessments formatively as part of their instructional practice. Finally, the work will develop a community of learners through the development of a technical assistance infrastructure, and leveraging teacher expertise to formatively assess students' work, using the assessments designed to be diagnostic and instructionally informative. External reviewers and an advisory board will provide formative feedback on the project's processes and summative evaluation of the project's results. The main outcomes of this endeavor will be prototypes of elementary science multi-dimensional assessments and new knowledge for the field on the underlying theory for developing teachers' capacity for engaging in multi-dimensional science instruction, learning, and assessment.

Professional Development for K-12 Science Teachers in Linguistically Diverse Classrooms

This project will engage science teachers in a sustained professional development (PD) program embedded in an afterschool science program designed for a linguistically diverse group of English learners (ELs).

Lead Organization(s): 
Award Number: 
1813937
Funding Period: 
Tue, 05/01/2018 to Sat, 04/30/2022
Full Description: 

This project will engage science teachers in a sustained professional development (PD) program embedded in an afterschool science program designed for a linguistically diverse group of English learners (ELs). The project targets science teachers (chemistry, physics, biology, and earth science) who teach in a high school that includes refugees from Myanmar, Central America, and Africa. Roughly 20% of the students are classified as ELs, representing almost 20 different linguistic groups, including a variety of Asian, Spanish, and Arabic languages. The fundamental issue that the project seeks to address is the design of science learning environments to facilitate ELs' learning in linguistically diverse high school classrooms. Research on science education for ELs has recommended several effective teaching approaches, such as building on students' diverse and rich resources, engaging students in authentic science learning practices, and encouraging and valuing flexible use of multiple languages. However, previously most research has focused on teaching speakers of Spanish in elementary and middle school level science classrooms in which a majority of ELs speak the same language. Furthermore, while many PD programs supporting science education for ELs provide a short-term workshop and/or newly designed curriculum and curriculum guide, there is a lack of PD models that engage teachers in a sustained community of practice through collaboration between researchers and teachers.

The project's primary goal includes broadening participation with direct impact on 14 science teachers, who will impact over 2000 students, including over 450 ELs, during the project implementation period. The project provides a sustained model of the PD program which further impacts EL students of teachers who participated in the various phases of the project. The project has a potential to make an impact on ELs and high school science teachers of ELs in three different ways. First, by generating PD materials that include effective teaching materials and instructional practices for ELs, which can be used by other educators situated in similar educational contexts. Second, by giving presentations and publish papers that communicate findings of the project to academic communities. These outputs can impact other researchers who would like to design PD programs to foster ELs' science learning. Third, by implementing the developed and tested PD program in a larger scale. The implementation of the project will build capacity to conduct a larger PD project to impact more teachers and students. These anticipated outputs and outcomes will provide valuable resources for researcher and practitioners looking to support ELs' science learning and steps forward to equity. Finally, the project team and two cohorts of science teachers will co-design a school-wide science teacher PD to transform science teaching materials and practices of non-participating teachers.

Pages

Subscribe to Design & Development