Design & Development

Spanning Boundaries: A Statewide Network to Support Science Teacher Leaders to Implement Science Standards

This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1907460
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS). The new model for professional learning combines three key elements: 1) Focusing on teacher leaders who can interpret, translate, and incorporate new approaches and resources into local contexts, 2) Engaging the expertise of informal science education specialists who are well versed in teacher professional learning and experiential approaches to learning, and 3) Establishing a statewide network of peers who can share experiences beyond individual school and district contexts. By developing a geographically-distributed network of support for science teacher leaders, the project is poised to create more equitable access to high quality professional learning opportunities for teachers as well as provide much needed support to the disproportionate number of novice teachers in schools with high populations of historically underrepresented students in science.

This early stage design and development project is guided by two research questions: 1) How do teacher leaders utilize structures, practices, and tools within an informal science institution-based network to interpret, filter, and translate available resources into professional learning supports for localized implementation of phenomena-based instruction? And 2) How do the professional learning supports developed by teacher leaders become more aligned with best practices for professional development (e.g., active learning, sustained, coherent, collaborative, and content-based) and incorporate aspects of informal learning (e.g., choice and experiential learning) throughout their participation in an ISI-based network? The project will engage two cohorts of 25 middle and high school science teacher leaders in overlapping two-year, one-week summer institutes, and a minimum of 12 online meetings during the academic years. The 30-hour summer institutes will be designed to address the multiple roles of teacher leaders as learners, classroom teachers, and teacher professional development providers. To sustain professional development across the academic year, monthly two-hour online meetings will be used to nurture the community of practice. Some sessions will focus on leadership and topics related to the NGSS, and other sessions will focus on deepening science content knowledge. The sources of data to be used in addressing the research questions include: 1) Video recordings, field notes of observations, and artifacts of professional development meetings, 2) Interviews with teacher leaders, and 3) Journal entries and artifacts from professional development sessions implemented by teacher leaders.  

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908319
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Jabon)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908311
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Wilson)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908185
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

CAREER: Expanding Latinxs' Opportunities to Develop Complex Thinking in Secondary Science Classrooms through a Research-Practice Partnership

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

Award Number: 
1846227
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. Science educators generally agree that science classrooms should provide opportunities for students to advance their thinking by engaging in critical conversations with each other as capable sense-makers. Despite decades of reform efforts and the use of experiential activities in science instruction, research indicates that classroom learning for students remains largely procedural, undemanding, and disconnected from the development of substantive scientific ideas. Furthermore, access to high-quality science instruction that promotes such complex thinking is scarce for students with diverse cultural and linguistic backgrounds. The project goals will be: (1) To design a year-long teacher professional development program; and (2) To study the extent to which the professional development model improves teachers' capacity to plan and implement inclusive science curricula.

This study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners. The work will build on a previous similar activity with one local high school; plans are to expand the existing study to an entire school district over five years. The proposed work will be conducted in three phases. During Phase I, the study will develop a conceptual framework focused on inclusive science curricula, and implement the new teacher professional development program in 3 high schools with 15 science teachers. Phase II will expand to 6 middle schools in the school district with 24 teachers aimed at creating a continuous and sustainable research-practice partnership approach at the district. Phase III will focus on data analysis, assessment of partnership activities, dissemination, and planning a research agenda for the immediate future. The study will address three research questions: (1) Whether and to what extent does participating teachers' capacity of planning and implementing the curriculum improve over time; (2) How and why do teachers show differential progress individually and collectively?; and (3) What opportunities and constraints within schools and the school district shape teachers' development of their capacity to design and implement curricula? To address the research questions, the project will gather information about the quality of planned and implemented curriculum using both qualitative and quantitative data. Main project's outcomes will be: (1) a framework that guides teachers' engagement in planning and implementing inclusive science curricula; and (2) increased knowledge base on teacher learning. An advisory board will oversee the work in progress. An external evaluator will provide formative and summative feedback.

CAREER: Cultivating Teachers' Epistemic Empathy to Promote Responsive Teaching

This CAREER award aims to study the construct of "epistemic empathy" and examine how it can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom. In the context of this project, epistemic empathy is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity aimed at the construction, communication, and critique of knowledge.

Lead Organization(s): 
Award Number: 
1844453
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

When students perceive that their sense-making resources, including their cultural, linguistic, and everyday experiences, are not relevant to their science and mathematics classrooms, they may view these fields as inaccessible to them. This in turn creates an obstacle to their engagement and active participation which becomes particularly consequential for students from traditionally underrepresented populations. This issue points at the pressing need to prepare science and mathematics teachers to open up their instruction to students’ diverse ideas and meaning-making repertoires. This CAREER award aims to address this need by studying the construct of teachers’ "epistemic empathy” which is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity—an activity aimed at the construction, communication, and critique of knowledge. Through epistemic empathy, teachers take learners' perspectives and identify with their sense-making experiences in service of fostering their inquiries. The project’s goals are to examine how epistemic empathy can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom.

The five research questions will be: (1) Do the ways in which pre-service teachers display epistemic empathy change throughout a course aimed at promoting attention to and knowledge about learners’ varied ways of knowing in science and mathematics?; (2) How do the teaching domain and teaching context influence how teachers express epistemic empathy, and the concerns and tensions they report around empathizing with learners’ thinking and emotions?; (3) How does epistemic empathy shape the ways in which teachers understand and reflect on their roles, goals, and priorities as science or mathematics teachers?; (4) How does epistemic empathy shape teachers’ responsiveness to student thinking and emotions during instruction?; and (5) How does teachers’ epistemic empathy influence how students orient and respond to each other’s thinking in science and mathematics classrooms?

To address these questions, the project will conduct a series of design-based research studies working with science and mathematics pre-service and in-service K-12 teachers (n=140) to design, implement, and analyze ways to elicit and cultivate their epistemic empathy. Further, the project will explore how epistemic empathy shapes teachers’ views of their roles, goals, and priorities as science or mathematics teachers and how it influences their enactment of responsive teaching practices. The project will also examine the influence of teachers’ epistemic empathy on student engagement, in particular in the ways students attend and respond to each other’s epistemic experiences in the classroom. Data collection will include video and audio recording of teacher education and professional development sessions; collection of teachers’ work within those sessions such as their responses to a pre- and post- video assessment task and their written analyses of different videos of student inquiry; interviews with the teachers; and videos from the teachers’ own instruction as well as teachers’ reflections on these videos in stimulated recall interviews. These data will be analyzed using both qualitative methods (i.e., discourse analysis, interaction analysis) and quantitative methods (i.e., blind coding, descriptive statistics). The project’s outcomes will be: (1) an instructional model that targets epistemic empathy as a pedagogical resource for teachers, with exemplars of activities and tasks aimed at developing teachers' attunement to and ways of leveraging learners' meaning-making repertoires (2) local theory of teachers' learning to epistemically empathize with learners in science and mathematics; and (3) empirical descriptions of how epistemic empathy functions to guide and shape teachers' responsiveness and students' engagement. An advisory board will provide feedback on the project’s progress, as well as formative and summative evaluation.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Linnenbrink-Garcia)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1813047
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Pages

Subscribe to Design & Development