Design & Development

Synchronous Online Video-Based Development for Rural Mathematics Coaches (Collaborative Research: Amador)

This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts.

Lead Organization(s): 
Award Number: 
2006353
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

Mathematics coaching is a research-based method to improve teacher quality, yet there is little research on teaching and coaching mathematics in rural contexts. In addition, mathematics coaches in rural contexts frequently work in isolation with little access to professional learning opportunities to support their coaching practice. This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.

Three cohorts of 12 coach participants will be recruited, with one cohort launching each year. In the first year, coaches will participate in four 2-hour synchronous content-focused course meetings, two coaching cycles with a mentor coach, and four video club meetings. In the second year, cohorts will conduct and facilitate four video club meetings. Research on impact follows a design-based model, with iterative cycles of design and revision of the online model. An ongoing analysis of 15-20% of the data collected each year will be used to inform revisions to the model from year to year, with fuller data analysis ongoing throughout the project. Participating coaches will be engaged in a noticing interview and surveys to assess changes in their perceptions and practices as coaches. Each coach participant will record one coaching interaction as data to assess changes in coaching practices. Patterns of participation and artifacts from the online course will be analyzed. Coaching cycle meetings and video club meetings will be recorded and transcribed. The Learning to Notice framework will be used as an analytical lens for describing changes in coaching practice.

The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Synchronous Online Video-Based Development for Rural Mathematics Coaches (Collaborative Research: Choppin)

This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts.

Lead Organization(s): 
Award Number: 
2006263
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

Mathematics coaching is a research-based method to improve teacher quality, yet there is little research on teaching and coaching mathematics in rural contexts. In addition, mathematics coaches in rural contexts frequently work in isolation with little access to professional learning opportunities to support their coaching practice. This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.

Three cohorts of 12 coach participants will be recruited, with one cohort launching each year. In the first year, coaches will participate in four 2-hour synchronous content-focused course meetings, two coaching cycles with a mentor coach, and four video club meetings. In the second year, cohorts will conduct and facilitate four video club meetings. Research on impact follows a design-based model, with iterative cycles of design and revision of the online model. An ongoing analysis of 15-20% of the data collected each year will be used to inform revisions to the model from year to year, with fuller data analysis ongoing throughout the project. Participating coaches will be engaged in a noticing interview and surveys to assess changes in their perceptions and practices as coaches. Each coach participant will record one coaching interaction as data to assess changes in coaching practices. Patterns of participation and artifacts from the online course will be analyzed. Coaching cycle meetings and video club meetings will be recorded and transcribed. The Learning to Notice framework will be used as an analytical lens for describing changes in coaching practice.

The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Cohen)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2009939
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

Evolving Minds: Promoting Causal-Explanatory Teaching and Learning of Biological Evolution in Elementary School

Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2009176
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

Natural selection is a fundamental mechanism of evolution, the unifying principle of biology. It is central to understanding the functional specialization of living things, the origin of species diversity and the inherent unity of biological life. Despite the early emergence of tendencies that can make evolution increasingly challenging to learn over time, natural selection is currently not taught until middle or high school. This is long after patterns of misunderstanding are likely to have become more entrenched. The current research responds to this situation. It targets elementary school as the time to initiate comprehensive instruction on biological evolution. Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, it seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it. It will also illuminate the value of simple tools, like explanatory storybooks, for elementary school teachers who are often expected to teach counterintuitive topics such as natural selection while not feeling confident in their own understanding.

This project will investigate changes in Grade 3 students' learning and reasoning about living things during implementation of a guided inquiry curriculum unit on evolution by natural selection that emphasizes causal-mechanistic explanation. Classroom inquiry activities and investigations into a range of real-world phenomena will be framed by engagement with a sequence of innovative custom causal-explanatory storybook, animation and writing prompt materials that were developed under prior NSF support to promote transferable, scientifically accurate theory- and evidence-based reasoning about natural selection. In response to the distinctive challenges of life science and evolution learning, the project will integrate and thematically unify currently disparate Next Generation Science Standards (NGSS) content and practice standards to create a comprehensive unit that addresses all three NGSS dimensions and is accompanied by evidence-based approaches to teacher professional development (PD). Using a design based research approach, and informed by cognitive developmental findings, this 4-year project will engage at least 700 students and their teachers and include partners from at least four school districts, Boston University, and TERC.

Responding to an Emerging Epidemic through Science Education

This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy.

Partner Organization(s): 
Award Number: 
2023088
Funding Period: 
Sun, 03/01/2020 to Sun, 02/28/2021
Full Description: 

At this moment, there is global concern about the coronavirus disease 2019 (COVID-19) and its potential to become an epidemic in the U.S. and other countries. Reports of past studies on student understanding of epidemics and how they are taught in school indicate that teachers are reticent to teach the material because the science is unclear given the emerging nature of evidence, or because they don?t understand it well themselves. Curricular resources are limited. Consequently, many students are left on their own to grapple with a potential public health emergency that could affect them and their families. The problem is further complicated by misinformation that may be spread through social media. There is less public understanding about the science of the virus and how it spreads; the risk of being infected; treatment, or, the severity of the illness. This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy. This project is an example of how science education can be both engaging and relevant.

Researchers at the University of North Carolina and the University of Missouri have been studying how to teach about issues at the crossroads of science and social concerns such as community health; they have developed a framework to build curriculum materials focused on student learning of such complex issues through modeling and inquiry. For this study on the coronavirus disease 2019 (COVID-19); first, the researchers will study student responses to the epidemic in real time, collecting data on student initial understandings and concerns. Then, using this information, they will work with 7 high school science teachers familiar with their framework to build a prototype curriculum unit, and test it in classrooms in 4 high schools selected for their socio-economic and ethnic/racial diversity. The study will gather data on student interest in the epidemic, as well as how students access information about it through various forms of media, and how they vet news reports and social media. The researchers will also use pre- and post-test data to assess student learning. After this initial enactment of the curriculum materials developed to teach about the epidemic, researchers and teachers will revise the curriculum materials to make them more effective. The final products will be a curriculum unit that will be readily available and modifiable for teaching and learning about future epidemics, as well as greater understanding about how students deal with vast amounts of information about societal issues that affect their immediate lives and the science behind them.

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

CAREER: Promoting Equitable and Inclusive STEM Contexts in High School

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

Award Number: 
1941992
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. An important barrier to persistence in STEM fields for marginalized groups, including women and ethnic minorities, relates to a culture in many STEM organizations, such as academic institutions, that fosters discrimination, harassment and prejudicial treatment of those from underrepresented groups. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes. Further, this work will explore how to create schools where students stand-up for each other and support each other so that any student who is interested will feel welcome in STEM classes and programs.

This research aims to examine cultures of discrimination and harassment in STEM contexts with attention to: 1) assessing STEM climates in high schools in order to identify the character of discrimination and harassment, 2) understanding how youth think about these instances of bias and discrimination; 3) identifying pathways to resilience for underrepresented youth pursuing STEM interests, and 4) testing an intervention to promote bystander intervention from those who witness discrimination and harassment in STEM contexts. This research will take an intersectional approach recognizing that those who are marginalized by multiple dimensions of their identity may experience STEM contexts differently than those who are marginalized by one dimension of their identity. Because adolescence is a critical developmental period during which youth are forming their attitudes, orientations and lifelong behaviors, this research will attend to issues of bias and discrimination well before individuals enter college STEM classrooms or the STEM workforce: namely, during high school. Further, this work will examine the creation of equitable STEM climates in both college-preparation classes as well as workforce development STEM programs offered though or in partnership with high schools. This research will provide clear evidence to document the current culture of STEM contexts in high schools, using mixed methods, including surveys, qualitative interviews and longitudinal measurement. Further, the project will involve development and implementation of an intervention, which will provide the first test of whether bystander intervention can be fostered in STEM students and will involve training STEM students in key 21st century skills, such as social-cognitive capacities and interpersonal skills, enabling them to speak up and support peers from marginalized backgrounds when they observe discrimination and harassment.

CAREER: Supporting Model Based Inference as an Integrated Effort Between Mathematics and Science

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools to generate knowledge about the natural world.

Award Number: 
1942770
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference. Since there is little research to show how to productively coordinate learning experiences across disciplinary boundaries of mathematics and science education, this project will address this gap by: (1) creating design principles for integrating instruction about statistical model-based inference in middle grades that coordinates data modeling instruction in mathematics classes with ecology instruction in science classes; (2) generating longitudinal (2 years) evidence about how mathematical and scientific ideas co-develop as students make use of increasingly sophisticated modeling and inferential practices; and (3) designing four integrated units that coordinate instruction across mathematics and science classes in 6th and 7th grade to support statistical model-based inference.

This project will use a multi-phase design-based research approach that will begin by observing teachers' current practices related to statistical model-based inference. Information from this phase will help guide researchers, mathematics teachers, and science teachers in co-designing units that integrate data modeling instruction in mathematics classes with ecological investigations in science classes. This project will directly observe students' thinking and learning across 6th and 7th grades through sample classroom lessons, written assessment items, and interviews. Data from these aspects of the study will generate evidence about how students make use of mathematical ideas in science class and how their ecological investigations in science class provoke a need for new mathematical tools to make inferences. The resulting model will integrate mathematics and science learning in productive ways that are sensitive to both specific disciplinary learning goals and the ways that these ideas and practices can provide a better approximation for students to knowledge generating practices in STEM disciplines.

CAREER: Spreading Computational Literacy Equitably via Integration of Computing in Preservice Teacher Preparation

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Lead Organization(s): 
Award Number: 
1941642
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Understanding and creating computer-powered solutions to professional and personal problems enables people to be safe, resourceful, and inventive in the technology-infused world. To empower society, K-12 education is rapidly changing to spread computational literacy. To spread literacy equitably, schools must give all students opportunities to understand and design computing solutions. However, school schedules are already packed with required coursework, and most teachers graduated from programs that did not offer computer science courses. To spread computational literacy within the K-12 system, this project will integrate computing into all preservice teacher programs at Georgia State University. This approach enables all teachers, regardless of primary discipline or grade band, to introduce their students to authentic computing solutions within their discipline and use these solutions as powerful tools for teaching disciplinary content and practices. In addition, this approach ensures equity because all preservice teachers will learn to use computing tools through their regular coursework, rather than a self-selected group that chooses to engage in elective courses or professional development on the topic. The project will also require preservice teachers to use computing-integrated activities in their student teaching experiences. This requirement helps teachers gain the confidence to use the activities in their future classrooms and immediately benefits students in the Atlanta area, who are primarily from groups that are underrepresented in computing, including women, people of color and those who are from low-income families.

This project will study the effect of computing integration in preservice teacher programs on computational literacy. Preservice teacher programs, like K-12 school schedules, are loaded with subject area, pedagogy, and licensure requirements. Therefore, research needs to examine the most sustainable methods for integrating computing into these programs. The proposed project will use design-based research to explore 1) how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and 2) which computing concepts are most valuable for general computational literacy. Because computational literacy is a relatively new literacy, the computing education community still debates which concepts are foundational for all citizens. By studying computing integration in a range of grade bands and subject areas, this project will explore which computing concepts are applicable in a wide range of subjects. These research activities will feed directly into the teaching objective of this project ? to provide computing education and computational literacy to all preservice teachers. This project will prepare about 1500 preservice teachers (more than half of them will be women) across all grades and subject areas who can teach computing integrated activities.

 

Pages

Subscribe to Design & Development