Design & Development

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

CAREER: Promoting Equitable and Inclusive STEM Contexts in High School

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

Award Number: 
1941992
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. An important barrier to persistence in STEM fields for marginalized groups, including women and ethnic minorities, relates to a culture in many STEM organizations, such as academic institutions, that fosters discrimination, harassment and prejudicial treatment of those from underrepresented groups. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes. Further, this work will explore how to create schools where students stand-up for each other and support each other so that any student who is interested will feel welcome in STEM classes and programs.

This research aims to examine cultures of discrimination and harassment in STEM contexts with attention to: 1) assessing STEM climates in high schools in order to identify the character of discrimination and harassment, 2) understanding how youth think about these instances of bias and discrimination; 3) identifying pathways to resilience for underrepresented youth pursuing STEM interests, and 4) testing an intervention to promote bystander intervention from those who witness discrimination and harassment in STEM contexts. This research will take an intersectional approach recognizing that those who are marginalized by multiple dimensions of their identity may experience STEM contexts differently than those who are marginalized by one dimension of their identity. Because adolescence is a critical developmental period during which youth are forming their attitudes, orientations and lifelong behaviors, this research will attend to issues of bias and discrimination well before individuals enter college STEM classrooms or the STEM workforce: namely, during high school. Further, this work will examine the creation of equitable STEM climates in both college-preparation classes as well as workforce development STEM programs offered though or in partnership with high schools. This research will provide clear evidence to document the current culture of STEM contexts in high schools, using mixed methods, including surveys, qualitative interviews and longitudinal measurement. Further, the project will involve development and implementation of an intervention, which will provide the first test of whether bystander intervention can be fostered in STEM students and will involve training STEM students in key 21st century skills, such as social-cognitive capacities and interpersonal skills, enabling them to speak up and support peers from marginalized backgrounds when they observe discrimination and harassment.

CAREER: Supporting Model Based Inference as an Integrated Effort Between Mathematics and Science

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools togenerate knowledge about the natural world.

Award Number: 
1942770
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference. Since there is little research to show how to productively coordinate learning experiences across disciplinary boundaries of mathematics and science education, this project will address this gap by: (1) creating design principles for integrating instruction about statistical model-based inference in middle grades that coordinates data modeling instruction in mathematics classes with ecology instruction in science classes; (2) generating longitudinal (2 years) evidence about how mathematical and scientific ideas co-develop as students make use of increasingly sophisticated modeling and inferential practices; and (3) designing four integrated units that coordinate instruction across mathematics and science classes in 6th and 7th grade to support statistical model-based inference.

This project will use a multi-phase design-based research approach that will begin by observing teachers' current practices related to statistical model-based inference. Information from this phase will help guide researchers, mathematics teachers, and science teachers in co-designing units that integrate data modeling instruction in mathematics classes with ecological investigations in science classes. This project will directly observe students? thinking and learning across 6th and 7th grades through sample classroom lessons, written assessment items, and interviews. Data from these aspects of the study will generate evidence about how students make use of mathematical ideas in science class and how their ecological investigations in science class provoke a need for new mathematical tools to make inferences. The resulting model will integrate mathematics and science learning in productive ways that are sensitive to both specific disciplinary learning goals and the ways that these ideas and practices can provide a better approximation for students to knowledge generating practices in STEM disciplines.

CAREER: Spreading Computational Literacy Equitably via Integration of Computing in Preservice Teacher Preparation

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Lead Organization(s): 
Award Number: 
1941642
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Understanding and creating computer-powered solutions to professional and personal problems enables people to be safe, resourceful, and inventive in the technology-infused world. To empower society, K-12 education is rapidly changing to spread computational literacy. To spread literacy equitably, schools must give all students opportunities to understand and design computing solutions. However, school schedules are already packed with required coursework, and most teachers graduated from programs that did not offer computer science courses. To spread computational literacy within the K-12 system, this project will integrate computing into all preservice teacher programs at Georgia State University. This approach enables all teachers, regardless of primary discipline or grade band, to introduce their students to authentic computing solutions within their discipline and use these solutions as powerful tools for teaching disciplinary content and practices. In addition, this approach ensures equity because all preservice teachers will learn to use computing tools through their regular coursework, rather than a self-selected group that chooses to engage in elective courses or professional development on the topic. The project will also require preservice teachers to use computing-integrated activities in their student teaching experiences. This requirement helps teachers gain the confidence to use the activities in their future classrooms and immediately benefits students in the Atlanta area, who are primarily from groups that are underrepresented in computing, including women, people of color and those who are from low-income families.

This project will study the effect of computing integration in preservice teacher programs on computational literacy. Preservice teacher programs, like K-12 school schedules, are loaded with subject area, pedagogy, and licensure requirements. Therefore, research needs to examine the most sustainable methods for integrating computing into these programs. The proposed project will use design-based research to explore 1) how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and 2) which computing concepts are most valuable for general computational literacy. Because computational literacy is a relatively new literacy, the computing education community still debates which concepts are foundational for all citizens. By studying computing integration in a range of grade bands and subject areas, this project will explore which computing concepts are applicable in a wide range of subjects. These research activities will feed directly into the teaching objective of this project ? to provide computing education and computational literacy to all preservice teachers. This project will prepare about 1500 preservice teachers (more than half of them will be women) across all grades and subject areas who can teach computing integrated activities.

 

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.

Spanning Boundaries: A Statewide Network to Support Science Teacher Leaders to Implement Science Standards

This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1907460
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS). The new model for professional learning combines three key elements: 1) Focusing on teacher leaders who can interpret, translate, and incorporate new approaches and resources into local contexts, 2) Engaging the expertise of informal science education specialists who are well versed in teacher professional learning and experiential approaches to learning, and 3) Establishing a statewide network of peers who can share experiences beyond individual school and district contexts. By developing a geographically-distributed network of support for science teacher leaders, the project is poised to create more equitable access to high quality professional learning opportunities for teachers as well as provide much needed support to the disproportionate number of novice teachers in schools with high populations of historically underrepresented students in science.

This early stage design and development project is guided by two research questions: 1) How do teacher leaders utilize structures, practices, and tools within an informal science institution-based network to interpret, filter, and translate available resources into professional learning supports for localized implementation of phenomena-based instruction? And 2) How do the professional learning supports developed by teacher leaders become more aligned with best practices for professional development (e.g., active learning, sustained, coherent, collaborative, and content-based) and incorporate aspects of informal learning (e.g., choice and experiential learning) throughout their participation in an ISI-based network? The project will engage two cohorts of 25 middle and high school science teacher leaders in overlapping two-year, one-week summer institutes, and a minimum of 12 online meetings during the academic years. The 30-hour summer institutes will be designed to address the multiple roles of teacher leaders as learners, classroom teachers, and teacher professional development providers. To sustain professional development across the academic year, monthly two-hour online meetings will be used to nurture the community of practice. Some sessions will focus on leadership and topics related to the NGSS, and other sessions will focus on deepening science content knowledge. The sources of data to be used in addressing the research questions include: 1) Video recordings, field notes of observations, and artifacts of professional development meetings, 2) Interviews with teacher leaders, and 3) Journal entries and artifacts from professional development sessions implemented by teacher leaders.  

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.

Pages

Subscribe to Design & Development