Pedagogical Content Knowledge

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

Award Number: 
1350342
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

Science, Technology, Engineering and Mathematics [STEM] and STEM education researchers and policy documents have directed mathematics educators at all levels to increase emphasis on quantitative reasoning so that students are prepared for continued studies in mathematics and other STEM fields. Often, teachers are not sufficiently prepared to support their students' quantitative reasoning. The products generated by this project fill a need for concrete materials at the pre-service level that embody research-based knowledge in the area of quantitative reasoning. The accessible collection of research and educational products provides a model program for changing prospective mathematics teachers' quantitative reasoning that is adoptable at other institutions across the nation. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge. Three interrelated research questions guide the project: (i) What aspects of quantitative reasoning provide support for prospective teachers' understanding of major secondary mathematics concepts such as function and algebra? (ii) How can instruction support prospective teachers' quantitative reasoning in the context of the teaching and learning of major secondary mathematics concepts such as function and algebra? (iii) How do the understandings prospective teachers hold upon entering a pre-service program support or inhibit their quantitative reasoning? Advancing Reasoning addresses these questions by enacting an iterative, multi-phase study with 200 prospective teachers enrolled in a secondary mathematics education content course over 5 years. The main phase of the study implements a series of classroom design experiments to produce knowledge on central aspects of prospective teachers' quantitative reasoning and the instructional experiences that support such reasoning. By drawing this knowledge from a classroom setting, Advancing Reasoning contributes research-based and practice-driven deliverables that improve the teaching and learning of mathematics.

CAREER: Algebraic Knowledge for Teaching: A Cross-Cultural Perspective

The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.

Lead Organization(s): 
Award Number: 
1350068
Funding Period: 
Fri, 08/15/2014 to Fri, 07/31/2020
Full Description: 

What content knowledge is needed for the teaching of mathematics? What practices are more effective for realizing student success? These questions have received considerable attention in the mathematics education community. The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. Focusing on two fundamental mathematical ideas recently emphasized by the Common Core State Standards - inverse relations and properties of operations - this study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance. It will be focused on three objectives: (1) identify AKT that facilitates algebraic thinking and develop preliminary findings into teaching materials; (2) refine research-based teaching materials based on the evaluative data; and (3) integrate research with education through course development at Temple University and teacher outreach in Philadelphia.

The model underlying this research program is that improved pedagogy will improve student learning, both directly and indirectly. A design-based research method will be used to accomplish objectives #1 and #2. Cross-cultural videotaped lessons will be first analyzed to identify AKT, focusing on teachers' use of worked examples, representations, and deep questions. This initial set of findings will then be developed into teaching materials. The U.S. and Chinese expert teachers will re-teach the lessons as part of the refinement process. Data sources will include: baseline and updated survey data (control, context, and process variables), observation, documents, videos, and interviews. The statistical techniques will include descriptive and inferential statistics and HLM will to address the hierarchical nature of the data.

This project involves students and teachers at various levels (elementary, undergraduate, and graduate) at Temple University and the School District of Philadelphia (SDP) in the U.S. and Nanjing Normal University and Nantong School District in China. A total of 600 current and future elementary teachers and many of their students will benefit directly or indirectly from this project. Project findings will be disseminated through various venues. Activities of the project will promote school district-university collaboration, a novice-expert teacher network, and cross-disciplinary and international collaboration. It is anticipated that the videos of expert teaching will also be useful future research by cognitive researchers studying ways to improve mathematics learning.

Publications
G indicates graduate student author; U indicates undergraduate student author

Journal Articles in English

  1. Ding, M., G Chen, W., & G Hassler, R. (2019). Linear quantity models in the US and Chinese elementary mathematics classrooms. Mathematical Thinking and Learning, 21, 105-130 doi: 10.1080/10986065.2019.1570834 . PDF
  2. Barnett, E., & Ding, M. (2019). Teaching of the associative property: A natural classroom investigation. Investigations of Mathematics Learning, 11, 148-166. doi: 10.1080/19477503.2018.1425592  PDF
  3. Ding, M., & G Heffernan, K. (2018). Transferring specialized content knowledge to elementary classrooms: Preservice teachers’ learning to teach the associative property. International Journal of Mathematics Educational in Science and Technology, 49, 899-921.doi: 10.1080/0020739X.2018.1426793 PDF
  4. Ding, M. (2018). Modeling with tape diagrams. Teaching Children Mathematics25, 158-165. doi: 10.5951/teacchilmath.25.3.0158  PDF
  5. G Chen, W., & Ding, M.* (2018). Transitioning from mathematics textbook to classroom instruction: The case of a Chinese expert teacher. Frontiers of Education in China, 13, 601-632. doi: 10.1007/s11516-018-0031-z (*Both authors contributed equally). PDF
  6. Ding, M., & G Auxter, A. (2017). Children’s strategies to solving additive inverse problems: A preliminary analysis. Mathematics Education Research Journal, 29, 73-92. doi:10.1007/s13394-017-0188-4  PDF
  7. Ding, M. (2016).  Developing preservice elementary teachers’ specialized content knowledge for teaching fundamental mathematical ideas: The case of associative property. International Journal of STEM Education, 3(9), 1-19doi: 10.1186/s40594-016-0041-4  PDF
  8. Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese elementary mathematics textbooks. Mathematical Thinking and Learning, 18, 45-68. doi: 10.1080/10986065.2016.1107819  PDF

Journal Articles in Chinese
Note: The Chinese journals Educational Research and Evaluation (Elementary Education and Instruction教育研究与评论 (小学教育教学) and Curriculum and Instructional Methods (课程教材教法) are both official, core journals in mathematics education field in China.

  1. Chen, W. (2018). Strategies to deal with mathematical representations – an analysis of expert’s classroom instruction. Curriculum and Instructional Methods. 数学教学的表征处理策略——基于专家教师的课堂教学分析. 课程教材教法. PDF
  2. Ma, F. ( 2018) – Necessary algebraic knowledge for elementary teachers- an ongoing cross-cultural study. Educational Research and Evaluation (Elementary Education and Instruction), 2, 5-7.  小学教师必备的代数学科知识-跨文化研究进行时。教育研究与评论 (小学教育教学), 2, 5-7. PDF
  3. Chen, J. (2018) Infusion and development of children’s early algebraic thinking – a comparative study of the US and Chinese elementary mathematics teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 8-13.  儿童早期代数思维的渗透与培养-中美小学数学教学比较研究。教育研究与评论(小学教育教学),28-13.  PDF
  4. Zong, L. (2018). A comparative study on the infusion of inverse relations in the US and Chinese classroom teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 14-19.  中美逆运算渗透教学对比研究。教育研究与评论(小学教育教学,2,14-19.  PDF
  5. Wu, X. (2018). Mathematical representations and development of children’s mathematical thinking: A perspective of US-Chinese comparison. Educational Research and Evaluation (Elementary Education and Instruction), 2, 20-24.  数学表征与儿童数学思维发展-基于中美比较视角。教育研究与评论(小学教育教学,2, 20-24.  PDF

Dissertations

  1. Hassler, R. (2016). Mathematical comprehension facilitated by situation models: Learning opportunities for inverse relations in elementary school.Published dissertation, Temple University, Philadelphia, PA. (Chair: Dr. Meixia Ding)  PDF
  2. Chen, W. (2018). Elementary mathematics teachers’ professional growth: A perspectives of TPACK (TPACK 视角下小学数学教师专业发展的研究). Dissertation, Nanjing Normal University. Nanjing, China. PDF

National Presentations
G indicates graduate student author; U indicates undergraduate student author

  • Ding, M (symposium organizer, 2019, April). Enhancing elementary mathematics instruction: A U.S.-China collaboration. Papers presented at NCTM research conference (Discussant: Jinfa Cai). (The following three action research papers were written by my NSF project teachers under my guidance).
      • Milewski Moskal, M., & Varano, A. (2019). The teaching of worked examples: Chinese approaches in U.S. classrooms. Paper 
      • Larese, T., Milewski Moskal, M., Ottinger, M., & Varano, A., (2019). Introducing Investigations math games in China: Successes and surprises. Paper
      • Murray, D., Seidman, J., Blackmon, E., Maimon, G., & Domsky, A. (2019). Mathematic instruction across two cultures: A teacher perspective. Paper
    • Ding, M., & Ying Y. (2018, June). CAREER: Algebraic knowledge for teaching: A cross-cultural perspective. Poster presentation at the National Science Foundation (NSF) PI meeting, Washington, DC.  Poster
    • Ding, M., Brynes, J., G Barnett, E., & Hassler, R. (2018, April). When classroom instruction predicts students’ learning of early algebra: A cross-cultural opportunity-propensity analysis. Paper presented at 2018 AERA conference. New York, NY.  Paper
    • Ding, M., Li, X., Manfredonia, M., & Luo, W. (2018, April). Video as a tool to support teacher learning: A Cross-cultural analysis. Paper presented at 2018 NCTM conference. Washington, DC.  PPT
    • GBarnett, E., & Ding, M. (2018, April). Teaching the basic properties of arithmetic: A natural classroom investigation of associativity. Poster presentation at 2018AERA conference, New York, NY.  Poster
    • Hassler, R., & Ding, M. (2018, April). The role of deep questions in promoting elementary students’ mathematical comprehension. Poster presentation at 2018AERA conference, New York, NY.
    • Ding, M., G Chen, W., G Hassler, R., Li, X., & G Barnett, E. (April, 2017). Comparisons in the US and Chinese elementary mathematics classrooms. Poster presentation at AERA 2017 conference (In the session of “Advancing Mathematics Education Through NSF’s DRK-12 Program”). San Antonio, TX. Poster
    • Ding, M., Li, X., G Hassler, R., & G Barnett, E. (April, 2017). Understanding the basic properties of operations in US and Chinese elementary School. Paper presented at AERA 2017 conference. San Antonio, TX.  Paper
    • Ding, M., G Chen, W., & G Hassler, R. (April, 2017). Tape diagrams in the US and Chinese elementary mathematics classrooms. Paper presented at NCTM 2017 conference. San Antonio, TX.  Paper
    • Ding, M., & G Hassler, R. (2016, June). CAREER: Algebraic knowledge for teaching in elementary school: A cross-cultural perspective. Poster presentation at the NSF PI meeting, Washington, DC. Poster
    • Ding, M. (symposium organizer, 2016, April). Early algebraic in elementary school: A cross-cultural perspective. Proposals presented at 2016 AERA conference, Washington, DC.
        • Ding, M. (2016, April). A comparative analysis of inverse operations in U.S. and Chinese elementary mathematics textbooks. Paper 
        • G Hassler, R. (2016, April). Elementary Textbooks to Classroom Teaching: A Situation Model Perspective. Paper
        • G Chen, W., & Ding, M. (2016, April). Transitioning textbooks into classroom teaching: An action research on Chinese elementary mathematics lessons. Paper
        • Li, X., G Hassler, R., & Ding, M. (2016, April). Elementary students’ understanding of inverse relations in the U.S. and China.  Paper
        • Stull, J., Ding, M., G Hassler, R., Li, X., & U George, C. (2016, April). The impact of algebraic knowledge for teaching on student learning: A Preliminary analysis. Paper
      • Ding, M., G Hassler, R., Li., X., & G Chen, W. (2016, April). Algebraic knowledge for teaching: An analysis of US experts' lessons on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA. Paper
      • G Hassler. R., & Ding, M. (2016, April). Situation model perspective on mathematics classroom teaching: A case study on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA.  Paper
      • Ding, M., & G Copeland, K. (2015, April). Transforming specialized content knowledge: Preservice elementary teachers’ learning to teach the associative property of multiplication. Paper presented at AERA 2015 conference, Chicago, IL. Paper PPT
      • Ding, M., & G Auxter, A. (2015, April). Children’s strategies to solving additive inverse problems: A preliminary analysis. Paper presented at AERA 2015 conference, Chicago, IL.  Paper

      Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

      Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

      Award Number: 
      1418235
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

      The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

      Disruptions Curriculum Website, with links to Discruptions in Ecosystems:

      Inventory of items for assessing teachers' knowledge of content and PCK

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1418133
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Project Evaluator: 
      Education Design
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Survey of U.S. Middle School Mathematics Teachers and Teaching

      This descriptive study will systematically track key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. 

      Lead Organization(s): 
      Award Number: 
      1417731
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      For the past 25 years, three major goals have animated U.S. educational policy: developing more knowledgeable teachers, implementing more challenging curricula, and fostering more ambitious instruction in classrooms. Yet despite volumes of policy guidance, on-the-ground effort, and research over the past decades, few comprehensive and representative portraits of teacher and teaching quality in U.S. classrooms exist. Instead, most research into these topics has been conducted with small or nonrepresentative samples, with the result that it is difficult to ascertain what, if any, progress has been made toward the three goals. Unlike student achievement, which the National Assessment of Educational Progress has tracked for almost 50 years, the classroom experiences of the typical U.S. student remain obscure.

      To address this issue, the 4-year descriptive study will begin by systematically tracking key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. To initiate this line of research, the research team will collect data in 2015 from a national representative sample of 600 U.S. middle school mathematics teachers. A written survey will build on one conducted in 2005-06, allowing for the comparison over time of teachers' curriculum use and mathematical knowledge. The research team will also record and score videos of instruction from a subset of these teachers, enabling both a description of current instruction and a comparison to lessons captured during the 1999 TIMSS video study. Both the survey and video datasets can serve as referents for future studies of instruction, for instance, studies investigating whether student participation in the development of mathematical ideas has changed over time. The research team will use both old and new technologies to complete the study. The mail survey will consist of existing items that tap teachers' mathematical knowledge for teaching, or the professional knowledge teachers draw upon in providing mathematics instruction to children. To conduct the video study, they will mail tablets for teachers to record their own instruction, and guidance on taping will be provided via YouTube video. The lessons that result will be scored using the Mathematical Quality of Instruction (MQI) instrument. The MQI measures key dimensions of mathematics classrooms, including the proportion of class time spent on mathematical tasks, the mathematical integrity of lesson content, and the nature of student participation in the development of mathematical ideas. Video and data from the survey will be made available to other researchers for scoring with other methods and observation instruments. Teachers, parents and students will be asked to consent to their classroom videos being made available. The study is largely descriptive, as are many others of its kind. However, describing the range of U.S. instruction can have a profound effect on the field, much as the TIMSS video studies did over a decade ago. Establishing methodologies for studying teachers and teaching at scale will contribute to efforts to evaluate and monitor progress toward broad-reaching national goals.

      Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

      SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1417040
      Funding Period: 
      Tue, 07/01/2014 to Sat, 06/30/2018
      Full Description: 

      The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

      SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

      Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

      This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

      Lead Organization(s): 
      Award Number: 
      1417809
      Funding Period: 
      Fri, 08/01/2014 to Tue, 07/31/2018
      Full Description: 

      The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice. 

      The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

      Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

      Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1418270
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

      The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

      Promoting Active Learning Strategies in Biology (PALS)

      This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

      Award Number: 
      1417735
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

      The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

      Knowledge Assets to Support the Science Instruction of Elementary Teachers (ASSET)

      This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. 

      Lead Organization(s): 
      Award Number: 
      1417838
      Funding Period: 
      Tue, 07/01/2014 to Fri, 06/30/2017
      Full Description: 

      This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The problem is particularly acute at the elementary level, where many teachers have limited science background and many have not taught science before. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. The resulting knowledge resources will be made available to teachers on a website. The resource will support elementary teachers as they plan for science instruction, and to enable them to productively adapt their own science materials to improve student learning. The project will work with teachers in high minority schools.

      The project will contribute to a developing theory of Collective Pedagogical Content Knowledge (C-PCK) which includes the research literature, practitioner literature and collective wisdom of practice. The researchers will seek to understand how C-PCK can be made more useful for teachers. The research questions are: (1) What are the strengths and weaknesses of the knowledge collection and synthesis method? (2) What factors must be taken into account in applying the knowledge collection and synthesis method across science topics? (3) What affordances and limitations does the web-based resource present for teachers primarily, and for teacher educators and instructional materials developers? (4) How does access to content-specific teaching knowledge affect teachers' planning and instruction? Content-specific teaching knowledge will be collected through literature reviews (for empirical knowledge) and a series of iterative, on-line expert panels (to gather practice-based knowledge). The two sources of knowledge will be synthesized for each of the science topics and organized in a web-based resource for teachers. A group of pilot teachers will use the resource as they plan for and teach a unit of instruction on the science topics. Project researchers will observe their instruction and interview the teachers to look for evidence of the resource facilitating their instruction. In addition, researchers will administer assessments to teachers and their students to gauge changes on content knowledge that might be attributable to the resource. Teacher feedback will be used to modify the web-based resource and maximize its usability.

      Pages

      Subscribe to Pedagogical Content Knowledge