Pedagogical Content Knowledge

Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

Award Number: 
1418235
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

Lead Organization(s): 
Award Number: 
1418133
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Project Evaluator: 
Education Design
Full Description: 

This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

Survey of U.S. Middle School Mathematics Teachers and Teaching

This descriptive study will systematically track key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. 

Lead Organization(s): 
Award Number: 
1417731
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

For the past 25 years, three major goals have animated U.S. educational policy: developing more knowledgeable teachers, implementing more challenging curricula, and fostering more ambitious instruction in classrooms. Yet despite volumes of policy guidance, on-the-ground effort, and research over the past decades, few comprehensive and representative portraits of teacher and teaching quality in U.S. classrooms exist. Instead, most research into these topics has been conducted with small or nonrepresentative samples, with the result that it is difficult to ascertain what, if any, progress has been made toward the three goals. Unlike student achievement, which the National Assessment of Educational Progress has tracked for almost 50 years, the classroom experiences of the typical U.S. student remain obscure.

To address this issue, the 4-year descriptive study will begin by systematically tracking key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students. To initiate this line of research, the research team will collect data in 2015 from a national representative sample of 600 U.S. middle school mathematics teachers. A written survey will build on one conducted in 2005-06, allowing for the comparison over time of teachers' curriculum use and mathematical knowledge. The research team will also record and score videos of instruction from a subset of these teachers, enabling both a description of current instruction and a comparison to lessons captured during the 1999 TIMSS video study. Both the survey and video datasets can serve as referents for future studies of instruction, for instance, studies investigating whether student participation in the development of mathematical ideas has changed over time. The research team will use both old and new technologies to complete the study. The mail survey will consist of existing items that tap teachers' mathematical knowledge for teaching, or the professional knowledge teachers draw upon in providing mathematics instruction to children. To conduct the video study, they will mail tablets for teachers to record their own instruction, and guidance on taping will be provided via YouTube video. The lessons that result will be scored using the Mathematical Quality of Instruction (MQI) instrument. The MQI measures key dimensions of mathematics classrooms, including the proportion of class time spent on mathematical tasks, the mathematical integrity of lesson content, and the nature of student participation in the development of mathematical ideas. Video and data from the survey will be made available to other researchers for scoring with other methods and observation instruments. Teachers, parents and students will be asked to consent to their classroom videos being made available. The study is largely descriptive, as are many others of its kind. However, describing the range of U.S. instruction can have a profound effect on the field, much as the TIMSS video studies did over a decade ago. Establishing methodologies for studying teachers and teaching at scale will contribute to efforts to evaluate and monitor progress toward broad-reaching national goals.

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 to Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

Lead Organization(s): 
Award Number: 
1417809
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice. 

The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418270
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

Promoting Active Learning Strategies in Biology (PALS)

This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

Award Number: 
1417735
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

Knowledge Assets to Support the Science Instruction of Elementary Teachers (ASSET)

This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. 

Lead Organization(s): 
Award Number: 
1417838
Funding Period: 
Tue, 07/01/2014 to Fri, 06/30/2017
Full Description: 

This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The problem is particularly acute at the elementary level, where many teachers have limited science background and many have not taught science before. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. The resulting knowledge resources will be made available to teachers on a website. The resource will support elementary teachers as they plan for science instruction, and to enable them to productively adapt their own science materials to improve student learning. The project will work with teachers in high minority schools.

The project will contribute to a developing theory of Collective Pedagogical Content Knowledge (C-PCK) which includes the research literature, practitioner literature and collective wisdom of practice. The researchers will seek to understand how C-PCK can be made more useful for teachers. The research questions are: (1) What are the strengths and weaknesses of the knowledge collection and synthesis method? (2) What factors must be taken into account in applying the knowledge collection and synthesis method across science topics? (3) What affordances and limitations does the web-based resource present for teachers primarily, and for teacher educators and instructional materials developers? (4) How does access to content-specific teaching knowledge affect teachers' planning and instruction? Content-specific teaching knowledge will be collected through literature reviews (for empirical knowledge) and a series of iterative, on-line expert panels (to gather practice-based knowledge). The two sources of knowledge will be synthesized for each of the science topics and organized in a web-based resource for teachers. A group of pilot teachers will use the resource as they plan for and teach a unit of instruction on the science topics. Project researchers will observe their instruction and interview the teachers to look for evidence of the resource facilitating their instruction. In addition, researchers will administer assessments to teachers and their students to gauge changes on content knowledge that might be attributable to the resource. Teacher feedback will be used to modify the web-based resource and maximize its usability.

Instructional Leadership for Scientific Practices: Resources for Principals in Evaluating and Supporting Teachers' Science Instruction

This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1415541
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Although K-8 principals are responsible for instructional improvement across all subject areas, their focus has traditionally been on literacy and mathematics and only occasionally on science content and practice. New standards and assessments in science require that principals and other instructional leaders provide significant support to teachers to help them successfully integrate scientific practices into their instruction. There is evidence that these instructional leaders often lack the knowledge, resources or skills to provide this support. This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level.

The resources developed will involve: (1) Introducing scientific practices (including rationales, descriptions and vignettes illustrating each of the 8 scientific practices); (2) Using tools in schools (providing an observation protocol, teacher feedback form and improvement planning template); and (3) Analyzing sample video (including links to video of K-8 science instruction, completed supervision tools, explanations of their coding, and discussion of how to use them with teachers). The project will conduct in-depth interviews with four principals, work with 25 principals in the Boston Public Schools to iteratively design and test the resources. The project will also develop a measure of Leadership Content Knowledge of Scientific Practices (LCK-SP) which will be used to assess principals' knowledge. The project's research component will: (1) investigate principals' current knowledge about scientific practices and methods for supervision of science instruction; and (2) examine how resources can be designed to support instructional leaders' content knowledge of scientific practices.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Pages

Subscribe to Pedagogical Content Knowledge