Pedagogical Content Knowledge

Exploring Early Childhood Teachers' Abilities to Identify Computational Thinking Precursors to Strengthen Computer Science in Classrooms

This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.

Lead Organization(s): 
Award Number: 
2006595
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

Strengthening computer science education is a national priority with special attention to increasing the number of teachers who can deliver computer science education in schools. Yet computer science education lacks the evidence to determine how teachers come to think about computational thinking (a problem-solving process) and how it could be integrated within their day-to-day classroom activities. For teachers of pre-kindergarten to 2nd (PK-2) grades, very little research has specifically addressed teacher learning. This oversight challenges the achievement of an equitable, culturally diverse, computationally empowered society. The project team will design a replicable model of PK-2 teacher professional development in San Marcos, Texas, to address the lack of research in early computer science education. The model will emphasize three aspects of teacher learning: a) exploration of and reflection on computer science and computational thinking skills and practices, b) noticing and naming computer science precursor skills and practices in early childhood learning, and c) collaborative design, implementation and assessment of learning activities aligned with standards across content areas. The project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project includes a two-week computational making and inquiry institute focused on algorithms and data in the context of citizen science and historical storytelling. The project also includes monthly classroom coaching sessions, and teacher meetups.

The research will include two cohorts of 15 PK-2 teachers recruited from the San Marcos Consolidated Independent School District (SMCISD) in years one and two of the project. The project incorporates a 3-phase professional development program to be run in two cycles for each cohort of teachers. Phase one (summer) includes a 2-week Computational Making and Inquiry Institute, phase two (school year) includes classroom observations and teacher meetups and phase three (late spring) includes an advanced computational thinking institute and a community education conference. Research and data collection on impacts will follow a mixed-methods approach based on a grounded theory design to document teachers learning. The mixed-methods approach will enable researchers to triangulate participants' acquisition of new knowledge and skills with their developing abilities to implement learning activities in practice. Data analysis will be ongoing, interweaving qualitative and quantitative methods. Qualitative data, including field notes, observations, interviews, and artifact assessments, will be analyzed by identifying analytical categories and their relationships. Quantitative data includes pre to post surveys administered at three-time points for each cohort. Inter-item correlations and scale reliabilities will be examined, and a repeated measures ANOVA will be used to assess mean change across time for each of five measures. Project results will be communicated via peer-reviewed journals, education newsletters, annual conferences, family and teacher meetups, and community art and culture events, as well as on social media, blogs, and education databases.

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

Comparing the Efficacy of Collaborative Professional Development Formats for Improving Student Outcomes of a Student-Teacher-Scientist Partnership Program

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership.

Lead Organization(s): 
Award Number: 
2010556
Funding Period: 
Tue, 09/01/2020 to Sun, 08/31/2025
Full Description: 

Science classrooms in the U.S. today increasingly expect students to engage in the practices of science in a way that help them form a deeper understanding of disciplinary core ideas and the practices by which science is done. To do this, students should learn how scientists work and communicate. It also calls for changes in how teachers teach science, which in turn creates a need for high-quality professional development so they can be more effective in the classroom. Professional scientists can also benefit from training preparing them to support teachers, motivate students, and model for students how scientists think and work. Preparing teachers and scientists through collaborative professional development can help maximize the impact they can have on student outcomes. To have the broadest impact, such professional development should be cost-effective and available to teachers in rural or underserved areas. This project focuses on high school life science (biology) teachers and their students. It will make use of an online mentoring platform, a student-teacher-scientist partnership program established in 2005. That study found that implementing in combination with high-quality, in-person collaborative teacher/scientist professional development resulted in positive and statistically significant effects on student achievement and attitudes versus business-as-usual methods of teaching the same science content. This project has two main components: 1) a replication study to determine if findings of the previous successful study hold true; and 2) adding an online format for delivering collaborative professional development to teachers and scientists enabling one to compare the effectiveness of online professional development and in-person professional development delivery formats for improving student outcomes.

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Jones)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010298
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

Design and Implementation of Immersive Representations of Practice

This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.

Lead Organization(s): 
Award Number: 
1908159
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Various researchers have documented that a large proportion of preservice teachers (PSTs) demonstrate less sophisticated professional knowledge for teaching both fractions and multiplication/division. Use of representations of practice (i.e., video, animation), and accompanying annotation technology, are effective in improving such professional knowledge, but PSTs continue to demonstrate a lack of precision in attending to or noticing particular mathematics in classroom scenarios. Fortunately, a new technology, 360-degree video, has emerged as a means of training novices for professional practice. This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction. Specifically, PSTs demonstrate difficulty in synthesizing explicit knowledge learned in the college classroom with tacit professional knowledge situated in professional practice. The initial pilot of the technology resulted in PSTs demonstrating specific attention to the mathematics. The purpose of the project will be to investigate how PSTs' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations (technologically embedded scaffolds). To do this, the project will examine where and what PSTs attend to when viewing 360-degree videos, both at a single point in the classroom and through incorporating multiple camera-perspectives in the same class. Additionally, the project will examine the role of annotation technology as applied to 360-degree video and the potential for variations in annotation technology. Findings will allow for an improved understanding of how teacher educators may support PSTs' tacit and explicit knowledge for teaching. The project will make video experiences publicly available and the platform used in the project to create these video experiences for teacher educators to use, create, and share 360-degree video experiences.

The project will examine how representations of practice can facilitate preservice teachers' professional knowledge for teaching fractions and multiplication/division. The project will: examine the effect of single versus multiple perspective in PSTs' professional knowledge; examine how PSTs use annotation technology in immersive video experiences, and its effect on PSTs' professional knowledge for teaching fractions and multiplication/division; and design a platform for teacher educators to create their own 360 video immersive experiences. Using an iterative design study process, the project team will develop and pilot single and multi-perspective 360-degree video experiences in grade 3-5 classrooms including developing a computer program to join multiple 360-degree videos. They will also develop an annotation tool to allow PSTs to annotate the single and multi-perspective 360 video experiences. Using a convergent mixed methods design, the project team will analyze the quantitative data using multiple regressions of pre-post data on mathematical knowledge for teaching and survey data on PSTs reported immersion and presence in viewing the videos to compare single and multi-perspective 360-degree video data. They will also qualitatively analyze heat maps generated from eye tracking, written responses from PSTs' noticing prompts, and field notes from implementation to examine the effect of single versus multiple perspectives. The team will use similar methods to examine how PSTs use the annotation technology and its effect. The results of the research and the platform will be widely disseminated.


Project Videos

2021 STEM for All Video Showcase

Title: Immersive Representations of Practice in Teacher Education

Presenter(s): Karl Kosko, Christine Austin, Richard Ferdig, Enrico Gandolfi, Jennifer Heisler, & Maryam Zolfaghari

2020 STEM for All Video Showcase

Title: Use of 360 Video in Elementary Mathematics Teacher Education

Presenter(s): Karl Kosko, Christina Austin, Richard Ferdig, Enrico Gandolfi, Qiang Guan, Jennifer Heisler, Annette Kratcoski, Cheng-Chang Lu, Yuxin Yang, & Maryam Zolfaghari


Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.


 Project Videos

2021 STEM for All Video Showcase

Title: MindHive: A Citizen Science Platform

Presenter(s): Sushmita Sadhukha, Engin Bumbacher, Kim Burgas, Suzanne Dikker, Rebecca Martin, Camillia Matuk, Yury Shevchenko, & Veena Vasudevan


Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists (Collaborative Research: Lewis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906588
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Davis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906565
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists (Collaborative Research: Rigelman)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to develop teacher leaders, improve teachers' instructional practices, and increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906682
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
RMC Research
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Pages

Subscribe to Pedagogical Content Knowledge