Pedagogical Content Knowledge

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Elliott)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101667
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Miller)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Lead Organization(s): 
Award Number: 
2010155
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Lead Organization(s): 
Award Number: 
2010207
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Peake)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Partner Organization(s): 
Award Number: 
2010119
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Exploring Changes in Teachers' Engineering Design Self-Efficacy and Practice through Collaborative and Culturally Relevant Professional Development

In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.

Lead Organization(s): 
Award Number: 
2010169
Funding Period: 
Fri, 01/01/2021 to Sun, 12/31/2023
Full Description: 

Promoting diverse, inclusive and equitable participation in engineering design education at the elementary and middle school levels is important for a number of reasons. In addition to benefits of a diverse STEM workforce to industry and the economy, youth are better able to make informed decisions about pursuing STEM degrees and STEM career pathways and youth are able to develop critical thinking and problem solving skills that allow them to be creative and innovative problem solvers. However, for youth to participate in inclusive and equitable engineering design experiences in elementary and middle schools settings, teachers need opportunities to develop engineering content knowledge, pedagogical content knowledge, and strategies for culturally-relevant teaching. In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.

The project advances the understanding of teacher training in K-12 engineering education and more specifically culturally-relevant engineering design education for 5th-8th grade students. The program design is guided by principles from Bandura's Social Learning Theory, Gladson-Billing's culturally-relevant teaching, and Gay's cultural-responsive teaching. The project combines promising, but often isolated, elements from previous engineering education professional development to give teachers a) pedagogical and content knowledge, b) culturally-relevant pedagogy that is inclusive of indigenous students, c) a supportive professional learning community, d) examples of project-based engineering problems implemented in real classrooms, e) extended scaffolded practice with their own classroom engineering tasks, and f) on-going support. The program is designed for teachers in rural and tribal schools with curricular materials developed collaboratively with community input to specifically address their community's unique needs. The project research team, guided by a diverse advisory board, will collect both quantitative and qualitative data in the forms of surveys, interviews, and videotaped observations to determine if and how the project is affecting classroom engineering instruction and pedagogy, as well as the sense of competence and self-efficacy of the teacher participants. The classroom engineering tasks created through this project, especially those developed to be specifically relevant to Native American and rural student populations, will be promoted and made available to other teachers through a project website, teaching practice journals, and teacher conferences.


 Project Videos

2021 STEM for All Video Showcase

Title: Exploring Culturally Relevant Engineering Education Design

Presenter(s): Julie Robinson, Frank Bowman, Bethany Klemetsrud, & Erin Lacina


Reaching Across the Hallway: An Interdisciplinary Approach to Teaching Computer Science in Rural Schools

This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.

Lead Organization(s): 
Award Number: 
2010256
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Strengthening computer science (CS) and computational thinking (CT) education is a national priority with particular attention to increasing the number of teachers prepared to deliver computer science courses. For rural schools, that collectively serve more than 10 million students, it is especially challenging. Rural schools find it difficult to recruit and retain STEM teachers that are prepared to teach computer science and computational thinking. This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project will build teachers' self-efficacy to deliver computer science concepts and practices into middle school social studies classrooms. The project is led by CodeVA (a statewide non-profit in Virginia), in partnership with TERC (a STEM-focused national research institution) and the University of South Florida College of Education, and in collaboration with six rural school districts in Virginia. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science. The professional development model will be designed and developed around meeting rural teachers, where they are, geographically, economically, and culturally. The model will also be sustainable and will work within the resource constraints of the rural school district. The model will also be built on strategies that will broadly spread CS education while building rural capacity.

The project will use a mixed-methods research approach to understand the model's potential to build capacity for teaching CS in rural schools. The research design is broken down into four distinct phases; planning/development prototyping, piloting and initial dissemination, an efficacy study, and analysis, and dissemination. The project will recruit 45 teacher-leaders and one district-level instructional coach, 6th and 7th-grade teachers, and serve over 1900 6th and 7th-grade students. Participants will be recruited from the rural Virginia school districts of Buchanan, Russell, Charlotte, Halifax, and Northampton. The research question for phase 1 is what is each district's existing practice around computer science education (if any) and social studies education? Phases 2, 3 and 4 research will examine the effectiveness of professional development on teacher leadership and the CS curricular integration. Phase 4 research will examine teacher efficacy to implement the professional development independently, enabling district teachers to integrate CS into their social studies classes. Teacher data sources for each phase include interviews with administrators and teachers, teacher readiness surveys, observations, an examination of artifacts, and CS/CT content interviews. Student data will consist of classroom observation and student attitude surveys. Quantitative and qualitative data will be triangulated to address each set of research questions and provide a reliability check on findings. Qualitative data, such as observations/video, and interview data will be analyzed through codes that represent expected themes and patterns related to teachers' and coaches' experiences. Project results will be communicated through presentations at conferences such as Special Interest Group on Computer Science Education, the Computer Science Teachers Association (CSTA), the National Council for Social Studies (NCSS), and the American Educational Research Association. Lesson plans will be made available on the project website, and links will be provided through publications and newsletters such as the NCSS Middle-Level Learner, NCSS Social Education, CSTA the Voice, the NSF-funded CADREK12 website and the NSF-funded STEM Video Showcase.


 Project Videos

2021 STEM for All Video Showcase

Title: Integrating Computer Science and Social Studies in MS

Presenter(s): Bryan Wallace, Debra Bernstein, & Michael Berson


SPIRAL: Supporting Professional Inquiry and Re-Aligning Learning through a Structured e-Portfolio System

This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS).

Award Number: 
2010505
Funding Period: 
Thu, 10/01/2020 to Sat, 09/30/2023
Full Description: 

Professional development for science teachers is often restricted to content required for a single grade level or grade band. Consequently, teachers seldom have the opportunity to discuss evidence of how learning occurs as students pass from grade to grade. This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS). The core ideas are designed to spiral over grade levels, with each core idea being revisited with more complexity as students advance from grades K to 8. The electronic portfolio will include images of artifacts such as student work samples and videos that reflect students' evolving thinking and discourse about energy topics. As teachers organize, share, and discuss this progression of evidence in professional learning communities guided by the researchers, the goal is to have a vertical electronic display of artifacts that illustrates how learning can occur. The vertically aligned evidence will help other teachers in the school district to gain an increasingly complex understanding of student learning trajectories across grade levels to improve teaching and learning in science classrooms across the district. The project is innovative because its goal is to move beyond the grade-level collaborations typical of professional development practice and literature, toward multi-grade teams of teachers who engage in complex reflection about spiraling core ideas and scientific practices developed by students over time.

The research questions are: 1.) How does participation in a vertical professional learning community (PLC) influence teachers' knowledge and instruction for teaching disciplinary core ideas through engagement in science practices? 2.) In what ways does professional learning about science teaching and learning differ in a vertical PLC, compared to grade-level PLCs? And 3.) How does the use of an electronic portfolio and feedback system influence teachers' learning from a vertical PLC? The study will first work with K-8 teacher leaders in the Little River Unified School District in California where an electronic portfolio system is already in place due to a prior NSF grant. In the first year, the researchers will add new features to the electronic portfolio system to expand its capabilities. Each teacher would provide a 5-day portfolio of lessons in the fall semester of the first year as a baseline measure of instructional practices. The project will focus on NGSS competencies in developing models and constructing explanations for energy concepts. The researchers will measure progress through teacher interviews, surveys, and lesson plans. Teachers will also collect additional artifacts reflecting student-drawn conceptual models and written or oral causal explanations of anchoring phenomena throughout the assigned units. By the end of the study, teachers will collect new 5-day portfolios, to sum up what they have learned and how they are approaching teaching the energy concepts and science practices. Participating teacher leaders will work with the UCLA research team to design and facilitate a series of professional development modules for all science teachers across grades K-8. These modules will use the evidence in the vertical portfolios to illustrate teaching and learning trajectories across K-8 physical science energy concepts and science.

Supporting Students' Language, Knowledge, and Culture through Science

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

Lead Organization(s): 
Award Number: 
2010633
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The Language, Culture, and Knowledge-building through Science project seeks to explore and positively influence the work of science teachers at the intersection of three significant and ongoing challenges affecting U.S. STEM education. First, U.S. student demographics are rapidly changing, with an increasing number of students learning STEM subjects in their second language. This change means that all teachers need new skills for meeting students where they currently are, linguistically, culturally, and in terms of prior science knowledge. Second, the needs and opportunities of the national STEM workforce are changing rapidly within a shifting employment landscape. This shift means that teachers need to better understand future job opportunities and the knowledge and skills that will be necessary in those careers. Third, academic expectations in schools have changed, driven by changes in education standards. These new expectations mean that teachers need new skills to support all students to master a range of practices that are both conceptual and linguistic. To address these challenges, teachers require new models that bring together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. This project begins with such an initial model, developed collaboratively with science teachers in a prior project. The model will be rigorously tested and refined in a new geographic and demographic context. The outcome will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

This project model starts with three theoretical constructs that have been integrated into an innovative framework of nine practices. These practices guide teachers in how to simultaneously support students' language development, cultural sustenance, and knowledge building through science with a focus on supporting and challenging multilingual learners. The project uses a functional view of language development, which highlights the need to support students in understanding both how and why to make shifts in language use. For example, students' attention will be drawn to differences in language use when they shift from language that is suited to peer negotiation in a lab group to written explanations suitable for a lab report. Moving beyond a funds of knowledge approach to culture, the team view of integrating students' cultural knowledge includes strengthening the role of home knowledge in school, but also guiding students to apply school knowledge to their out-of-school interests and passions. Finally, the project team's view of cumulative knowledge building, informed by work in the sociology of knowledge, highlights the need for teachers and students to understand the norms for meaning making within a given discipline. In the case of science, the three-dimensional learning model in the Next Generation Science Standards makes these disciplinary norms visible and serves as a launching point for the project's work. Teachers will be supported to structure learning opportunities that highlight what is unique about meaning making through science. Using a range of data collection and analysis methods, the project team will study changes in teachers' practices and beliefs related to language, culture and knowledge building, as teachers work with all students, and particularly with multilingual learners. The project work will take place in both classrooms and out of class science learning settings. By working closely over several years with a group of fifty science teachers spread across the state of Oregon, the project team will develop a typology of teachers (design personas) to increase the field's understanding of how to support different teachers, given their own backgrounds, in preparing all students for the broad range of academic and occupational pathways they will encounter.

Supporting Elementary Teacher Learning for Effective School-Based Citizen Science (TL4CS)

This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.

Lead Organization(s): 
Award Number: 
2009212
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Citizen science involves individuals, who are not professional scientists, in authentic scientific research, typically in collaboration with professional scientists. When implemented well in elementary schools, citizen science projects immerse students in science content and engage them with scientific practices. These projects can also create opportunities for students to connect with their local natural surroundings, which is needed, as some research has suggested that children are becoming increasingly detached from nature. The classroom teacher plays a critical role in ensuring that school-based citizen science projects are implemented in a way that maximizes the benefits. However, these projects typically do not include substantial guidance for teachers who want to implement the projects for instructional purposes. This project will develop two forms of support for teachers: (1) guidance embedded in citizen science project materials and (2) teacher professional development. It will develop materials and professional development experiences to support teacher learning for 80 5th grade teachers impacting students in 40 diverse elementary schools.

The overarching goal of this project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making. Specifically, the study is designed to address the following research questions: (1) What kinds of support foster teacher learning for enacting effective school-based citizen science? (2) How do supports for teacher learning shape the way teachers enact school-based citizen science? and (3) What is the potential of school-based citizen science for positively influencing student learning and student attitudes toward nature and science? Data collected during project implementation will include teacher surveys, student surveys and assessments, and case study protocols.


 Project Videos

2021 STEM for All Video Showcase

Title: Teacher Learning for Citizen Science

Presenter(s): Patrick Smith, Sarah Carrier, Goforth Goforth, Meredith Hayes, Jill McGowan, & Lindsey Sachs


Responsive Instruction for Emergent Bilingual Learners in Biology Classrooms

This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.

Lead Organization(s): 
Award Number: 
2010153
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

The population of students who are emergent bilinguals in the US is not only growing in number but also, historically, has been underrepresented in STEM fields. Emergent bilingual students have not had access to the same high-quality science education as their peers, despite bringing rich academic, linguistic and cultural strengths to their learning. Building on smaller pilot studies and ideas that have shown to be successful in supporting emergent bilingual students' learning of elementary science, this project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science. The collaboration will include two partner districts that will allow the project work to impact about 11,000 high school students and 30 biology teachers in Florida. Over time, the project team plans to enact and study three cohorts of teachers and students; use the information learned to improve the instructional model; and develop lessons, a website, and other materials that can be applied to other contexts to support emergent bilingual students' learning of biology. This project will increase emergent bilingual students' participation in biology classes, improve their achievement and engagement in science and engineering practices, extend current research-based practices, and document how to build on emergent bilingual students' strengths and prior experiences.

In two previous pilot studies through the collaboration of an interdisciplinary team, the project team developed an instructional model that they found supported emergent bilingual students to have high-quality opportunities for science learning. The model builds on research related to culturally responsive instruction; funds of knowledge (including work on identity affirmation and collaboration); and linguistically responsive instruction (including using students' home languages and multiple modalities, and explicit attention to academic language). Using design-based research, the project team will gather data from two primary settings: their professional development program and biology teachers' classrooms. They will use these data both to improve the instructional model and professional development for biology teachers. Additionally, the project team will study how teachers use the model to support emergent bilingual students' biology engagement and achievement, as well as study how biology teachers enact the instructional model in two school districts. The project will work toward three main outcomes: a) to develop new knowledge related to how diverse learners develop language and content knowledge in biology through engaging in science and engineering practices; b) to generate new knowledge about how biology teachers can adapt responsive instruction to local contexts and student populations; and c) to articulate an instructional model for biology teachers of emergent bilingual students that is rigorous, yet practical. The dissemination and sustainability include publishing and presenting findings at a range of conferences and journals; making available the refined instructional framework and professional development materials on a website; communication with district leaders and policymakers; and white papers that can be more widely distributed.


 Project Videos

2021 STEM for All Video Showcase

Title: RIEL Biology for Emergent Bilingual Learners

Presenter(s): Julie Brown, Mark B. Pacheco, E. Christine Davis, & Karl G Jung


Pages

Subscribe to Pedagogical Content Knowledge