Reasoning Skills

Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

Award Number: 
1316347
Funding Period: 
Mon, 07/15/2013 to Fri, 06/30/2017
Full Description: 

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. It is hypothesized that the QT model will enhance pre- and in-service secondary teachers' development of professional vision and leadership skills necessary for 21st century STEM education. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms in five of Georgia's high-need school districts by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions. As a result of such interactions, students' scientific literacy will be enhanced, including their ability to participate in content-rich discourse (i.e., QT) through effective disciplinary critical-analytic thinking and epistemic cognition. The contributions of this project, beyond the tangible benefits for teacher and student participants, include the development, refinement, and dissemination of an effective QT intervention and professional developmental framework that the entire science education community can use to promote scientific literacy and understanding.

The project goals are being achieved through a series of three studies employing complementary methods and data sources, and a focus upon dissemination of the model in the final project year. The first two years of the project focus on developing and refining the curricular and intervention efficacy materials using design-based research methods. In Year 3, the project engages in a quasi-experimental study of the refined QT model, followed by further refinements before disseminating the materials both within Georgia and throughout the national science education community in Year 4. Quantitative measures of teacher and student discourse and knowledge, as well as video-coding and qualitative investigations of intervention efficacy, are being analyzed using multiple methods. In collaboration with, but independent from project staff and stakeholders, the participatory and responsive evaluation utilizes a variety of qualitative and quantitative methods to conduct formative and summative evaluation.

Over the course of four years, the project will involve the participation of approximately 32 teachers in Georgia whose students include substantive percentages from populations underrepresented in the STEM fields. In addition to advancing their own students' scientific literacy, these participating teachers receive professional development on how to train other teachers, outside of the project, in using QT to promote scientific literacy. Further, the project will conduct a QT Summit for educational stakeholders and non-participant teachers to disseminate the intervention and professional development model. Finally, the project team will disseminate the findings widely to applied and scholarly communities through a website with materials and PD information (http://www.qualitytalk.org), professional journals, conferences, and NSF's DRK-12 Resource Network. This project, with its focus on teacher leadership and the pedagogical content knowledge necessary to use discourse to promote student science literacy, significantly advances the nation's goals of producing critical consumers and producers of scientific knowledge.

Developing Critical Evaluation as a Scientific Habit of Mind: Instructional Scaffolds for Secondary Earth and Space Sciences

This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.

Lead Organization(s): 
Award Number: 
1316057
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project develops and tests graphical scaffolds, called model-evidence link (MEL) activities, which facilitate high school students' coordination of connecting evidence with alternative explanations of particular Earth and space sciences phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry. The project's research questions are: (1) how does year-long instruction using MEL activities change high school students' critical evaluation abilities; (2) how does use of critical evaluation promote judgment reappraisals about Earth and space science topics with large plausibility gaps; and (3) to what extent does promotion of plausibility reappraisal lead to high school students' construction and reconstruction of scientifically accurate conceptions about fundamental concepts in Earth and space sciences? The project develops three MEL activities that focus on important topics in Earth and space sciences. The topics will be hydraulic fracturing, wetlands, and lunar origin. These MELs were selected because they align with major topical units in Earth and space science (i.e., geology, water resources, and astronomy, respectively).

The project develops effective instructional tools (the MEL activities to stimulate collaborative argumentation) designed to increase high school students' critical evaluation abilities that that are central for fully engaging in these scientific and engineering practices and constructing scientifically accurate understanding. Science topics require students to effectively evaluate connections with evidence and alternative explanations. The development of MEL activities that cover major Earth and space sciences topics will assist teachers in increasing their students' critical evaluation abilities. These tools are developed in geographically diverse settings, including one school district with a Hispanic majority, to gauge their effectiveness in helping all students. Furthermore, the design-based research methods employed in the proposed study are focused on developing tools that can be easily integrated into a variety of science curricula to supplement and reinforce scientific and engineering practices, rather than wholesale replacement. The ability to be critically evaluative is essential for developing a society that characteristically exhibits scientific habits of mind and is equipped to deal with future challenges in a way that is beneficial to our nation.

Promoting Students' Spatial Thinking in Upper Elementary Grades using Geographic Information Systems (GIS)

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316660
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The study incorporates the latest developments in the use of Geographic Information Systems (GIS) within the classroom. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation. Geography teachers in elementary schools are trained to use GIS software to create digital maps specific to the subject matter and projects on which their students work. Students then work in small collaborative groups and engage in open discussions designed to enhance the development and use of their spatial and multi-step causal reasoning.

GIS has been used in middle and high school settings. This project introduces GIS to upper elementary grades particularly to allow students an early opportunity to be involved in meaningful data and map-driven activities to promote their spatial skills. The proposal team predicts that the traditional gap between girls and boys in spatial skills will shrink with training thus will be strongly pronounced in the experimental relative to control groups. The project documents the effectiveness of instructional practices that are likely to enhance multistep reasoning, systems thinking, conceptual and spatial understanding, and motivation for learning while learning to work with maps to solve problems involving geography and ecological awareness. The project develops instructional methods that incorporate innovative tools for promoting problem solving to address real-life issues in this increasingly technology-driven era. The innovative tool is open-source and designed for professionals, but it can be modified to be child-friendly. Classroom activities are integrated with science and social studies curricula and content standards. Teachers are expected to find the curriculum attractive and easy to implement.

Fostering Pedagogical Argumentation: Pedagogical Reasoning with and About Student Science Ideas

This project will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas.

Award Number: 
1316232
Funding Period: 
Tue, 10/01/2013 to Sun, 09/30/2018
Full Description: 

Effective and ambitious teaching in science requires that teachers listen and respond to student ideas. But research shows that doing so in the classroom can be logistically, socially, and intellectually challenging for both expert and novice teachers. Listening to student ideas requires teachers to anticipate and interpret multiple lines of thinking that may be expressed ambiguously and simultaneously. Responding to student thinking, both in-the-moment and in future instruction, presents further challenges because teachers must balance their choices with other instructional priorities. Unfortunately, little work has been done to date in supporting these challenging practices in those who are learning to teach, pre-service teachers (PSTs). In order to address this gap, researchers in this Exploratory project will introduce a new approach to teacher education: pedagogical argumentation. Pedagogical argumentation creates a supportive environment in which the PSTs learn and refine these practices of listening and responding by using student ideas as evidence to construct and defend potential pedagogical decisions.

Over three years researchers from the University of Wisconsin-Madison will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas. Working with both elementary and secondary PSTs, researchers will probe and explore their changing listening and responding practices by: collecting records of pedagogical argumentation (both video and written) as it occurs in the science teaching methods courses; conducting interviews about PSTs understanding of student ideas; and documenting PSTs teaching experiences in their school placements.

The science teacher education community writ large is in need of systematic approaches to teacher education that better support PSTs in learning ambitious teaching practices such as listening and responding to student ideas. The proposed study addresses this need and, in doing so, will support both immediate PSTs in engaging in this work as well as the broader teacher education community as it struggles with these same challenges. Moreover, the novel practice of pedagogical argumentation advances the fields theoretical understanding of the problem space for supporting these challenges by combining insight from two extensive programs of research in teaching and learning: 1) teacher reasoning about student ideas, and 2) argumentation about science content. As such, the practice of pedagogical argumentation has the potential to transform how teacher educators approach pre-service education.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

Enhancing Teaching and Learning with Social Media: Supporting Teacher Professional Learning and Student Scientific Argumentation

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards.

Award Number: 
1316799
Funding Period: 
Thu, 08/01/2013 to Mon, 07/31/2017
Full Description: 

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards. Participants include a team of ninth and tenth grade Life Science teachers collaborating as co-researchers with project staff in a design study to develop one socially mediated science unit. It also produces strategies, tools and on-line materials to support teachers' development of the pedagogical, content, and technological knowledge needed to integrate emerging technologies into science instruction. This project focuses on the flexible social media sites such as Facebook, Twitter and Instagram that students frequently use in their everyday lives. Research questions explore the technology of social media and the pedagogy needed to support student engagement in scientific argumentation. The Year Three pilot analyses provide data on the professional learning model. The project provides a basis for scale-up with this instructional and professional learning model to other core science content, cross-cutting themes, and STEM practices.

Innovate to Mitigate: A Crowdsourced Carbon Challenge

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316225
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines. Areas in which active cutting edge research on greenhouse gas mitigation is currently taking place include, among others, biology (photosynthesis, or biomimicry of photosynthesis to sequester carbon) and chemistry (silicon chemistry for photovoltaics, carbon chemistry for decarbonization of fossil fuels). Collaborating in teams of 2-5, participants engage with the basic science in these areas, and become skilled at applying scientific ideas, principles, and evidence to solve a design problem, while taking into account possible unanticipated effects. They refine their solutions based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

An interactive project website describes specifications for the challenge and provides rubrics to support rigor. It includes a library of relevant scientific resources, and, for inspiration, links to popular articles describing current cutting-edge scientific breakthroughs in mitigation. Graduate students recruited for their current work on mitigation projects provide online mentoring. Social networking tools are used to support teams and mentors in collaborative scientific problem-solving. If teams need help while working on their challenges, they are able to ask questions of a panel of expert scientists and engineers who are available online. At the end of the challenge, teams present and critique multimedia reports in a virtual conference, and the project provides awards for excellence.

The use of open innovation challenges for education provides a vision of a transformative setting for deep learning and creative innovation that at the same time addresses a problem of critical importance to society. Researchers study how this learning environment improves learning and engagement among participants. This approach transcends the informal/formal boundaries that currently exist, both in scientific and educational institutions, and findings are relevant to many areas of research and design in both formal and informal settings. Emerging evidence suggests that open innovation challenges are often successfully solved by participants who do not exhibit the kinds of knowledge, skill or disciplinary background one might expect. In addition, the greater the diversity of solvers is, the greater the innovativeness of challenge solutions tends to be. Therefore, it is expected that the free choice learning environment, the nature of the challenge, the incentives, and the support for collaboration will inspire the success of promising young participants from underserved student populations, as well as resulting in innovative solutions to the challenge given the diversity of teams.

CAREER: Reciprocal Noticing: Latino/a Students and Teachers Constructing Common Resources in Mathematics

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Lead Organization(s): 
Award Number: 
1253822
Funding Period: 
Wed, 05/15/2013 to Mon, 04/30/2018
Full Description: 

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners. Thus, the focus of the project is on developing the concept of reciprocal noticing as a way to support better interactions between teachers and Latino/a students in elementary mathematics classrooms.

The project uses a transformative teaching experiment methodology and is guided by the initial conjectures that to make mathematics classrooms intellectually attractive places, Latino/a students and teachers need to learn to develop common resources for teaching and learning mathematics, and that reciprocal noticing as a process supports teachers and students in developing these common resources for teaching and learning mathematics. The project design centers around two research questions:How do teachers and Latino/a students tune to each other's mathematical ideas and explicitly indicate to one another how their ideas are important for discourse that promotes mathematical reasoning in classrooms characterized by reciprocal noticing? What patterns emerge across four classrooms when teachers and Latino/a students engage in reciprocal noticing?

The concept of reciprocal noticing can significantly enhance emerging research in mathematics education about the importance of teacher noticing. Further, this revised concept of noticing can transform mathematics classroom to better support English Language Learners.

The PI will incorporate project findings and videos into methods courses for preservice elementary teachers.

CAREER: Investigating Differentiated Instruction and Relationships Between Rational Number Knowledge and Algebraic Reasoning in Middle School

The proposed project initiates new research and an integrated education plan to address specific problems in middle school mathematics classrooms by investigating (1) how to effectively differentiate instruction for middle school students at different reasoning levels; and (2) how to foster middle school students' algebraic reasoning and rational number knowledge in mutually supportive ways.

Lead Organization(s): 
Award Number: 
1252575
Funding Period: 
Thu, 08/01/2013 to Fri, 07/31/2020
Full Description: 

Middle school mathematics classrooms are marked by increasing cognitive diversity and students' persistent difficulties in learning algebra. Currently middle school mathematics instruction in a single classroom is often not differentiated for different thinkers, which can bore some students or overly challenge others. One way schools often deal with different thinkers at the same grade level is by tracking, which has also been shown to have deleterious effects on students, both cognitively and affectively. In addition, students continue to struggle to learn algebra, and increasing numbers of middle school students are receiving algebra instruction. The proposed project initiates new research and an integrated education plan to address these problems by investigating (1) how to effectively differentiate instruction for middle school students at different reasoning levels; and (2) how to foster middle school students' algebraic reasoning and rational number knowledge in mutually supportive ways. Educational goals of the project are to enhance the abilities of prospective and practicing teachers to teach cognitively diverse students, to improve doctoral students' understanding of relationships between students' learning and teachers' practice, and to form a community of mathematics teachers committed to on-going professional learning about how to differentiate instruction.

Three research-based products are being developed: two learning trajectories, materials for differentiating instruction developed collaboratively with teachers, and a written assessment to evaluate students' levels of reasoning. The first trajectory, elaborated for students at each of three levels of reasoning, focuses on developing algebraic expressions and solving basic equations that involve rational numbers; the second learning trajectory, also elaborated for students at each of three levels of reasoning, focuses on co-variational reasoning in linear contexts. In addition, the project investigates how students' classroom experience is influenced by differentiated instruction, which will allow for comparisons with research findings on student experiences in tracked classrooms. Above all, the project enhances middle school mathematics teachers' abilities to serve cognitively diverse students. This aspect of the project has the potential to decrease opportunity gaps. Finally, the project generates an understanding of the kinds of support needed to help prospective and practicing teachers learn to differentiate instruction.

The project advances discovery and understanding while promoting teaching, training, and learning by (a) integrating research into the teaching of middle school mathematics, (b) fostering the learning of all students by tailoring instruction to their cognitive needs, (c) partnering with practicing teachers to learn how to implement this kind of instruction, (d) improving the training of prospective mathematics teachers and graduate students in mathematics education, and (e) generating a community of mathematics teachers who engage in on-going learning to differentiate instruction. The project broadens participation by including students from underrepresented groups, particularly those with learning disabilities. Results from the project will be broadly disseminated via conference presentations; articles in diverse media outlets; and a project website that will make project products available, be a location for information about the project for the press and the public, and be a tool to foster teacher-to-teacher communication.


Project Videos

2019 STEM for All Video Showcase

Title: Differentiating Mathematics Instruction for Middle School

Presenter(s): Amy Hackenberg, Rebecca Borowski, Mihyun Jeon, Robin Jones, & Rob Matyska


High Adventure Science: Earths Systems and Sustainability

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

Project Email: 
Lead Organization(s): 
Award Number: 
1220756
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Project Evaluator: 
Karen Mutch-Jones
Full Description: 

We have entered the Anthropocene, an age when the actions of seven billion humans have increasing influence on the Earth. The High-Adventure Science: Earth Systems and Sustainability project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The Concord Consortium in partnership with the University of California Santa Cruz and the National Geographic Society are co-developing these modules, conducting targeted research on how the modules enhance students' higher order thinking skills and understanding of human-Earth interactions, and broadly disseminating these materials via far-reaching education networks.

The High-Adventure Science: Earth Systems and Sustainability project is creating online, middle and high school curriculum modules that feature computational models and cover five topics: climate change, fresh water availability, fossil fuel utilization, resource sustainability, and land use management. At the same time, the project team is conducting design studies to look at how specific features, prompts, argumentation and evaluation tools built into the modules affect student understanding of core Earth science concepts. The design studies promote rapid, iterative module development and help to identify features that support student learning, as well as scientific reasoning, scientific argumentation with uncertainty, systems thinking, and model-based experimentation skills. For each module, pre- and posttest data, embedded assessments, student surveys, classroom observations, teacher interviews and surveys, provide important information to rapidly improve module features, content, and usability. The final, high-quality, project materials are being made available to a national audience through the National Geographic Society as well as through the High-Adventure Science: Earth Systems and Sustainability website hosted at the Concord Consortium.

It is essential that students graduate from high school with a solid understanding of the scientific concepts that help explain how humans impact Earth systems, and conversely, how Earth processes impact humans. The High-Adventure Science: Earth Systems and Sustainability project provides a unique, research-based approach to conveying to students core Earth science content, crosscutting concepts, and fundamental practices of science. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials, and the research findings provide new insights on how students learn core science concepts and gain critical scientific skills.

Pages

Subscribe to Reasoning Skills