Reasoning Skills

Integrating Chemistry and Earth Science

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

Award Number: 
1721163
Funding Period: 
Tue, 08/15/2017 to Wed, 07/31/2019
Full Description: 

This Integrating Chemistry and Earth science (ICE) project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards. The overarching goal of the project is to develop teacher capacity to teach and evaluate student abilities to use the practices of scientists and concepts from Earth science and chemistry to understand important phenomena in their immediate, familiar environments. The project has the potential to serve as a model for how to make cutting edge science directly accessible to all students. The project is a collaborative effort that engages scientists, science education researchers, curriculum developers, school curriculum and instruction leaders, and science teachers in the longer term challenge of infusing Earth science concepts and practices across the core high school science courses.

Current guidelines and standards for science education promote learning that engages students in three interrelated dimensions: disciplinary core ideas, scientific practices, and crosscutting ideas. This project is guided by the hypothesis that when provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and chemistry context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena. This project will employ a design based research approach, and during the two development-enactment-analysis-and-redesign cycles, the project team will collect student assessment data, teacher interview data, observational data from lessons, teacher surveys, and reflective teacher logbooks. These collected data will provide information about how teachers implement the lessons, what students do during the lessons, and what students learn from them that will lead to better design and a better understanding of student learning. This information will be used to inform the modification of lessons from cycle to cycle, and to inform the professional development materials for teachers. The research agenda for the project is guided by the following questions: 1. What are the design features of ICE lessons that support teachers in enacting three-dimensional instruction within the context of their classroom? 2. What are the design features of embedded three-dimensional assessments that yield useful classroom data for teachers and researchers regarding their students' abilities to integrate core ideas, scientific practices, and crosscutting concepts? 3. What is the nature of student learning related to disciplinary core ideas, scientific practices, and crosscutting concepts that results from students' engagement in ICE lesson sets? 4. What differences emerge in student engagement and learning outcomes for ICE lessons that incorporate local phenomena or data sets as compared to lessons that do not? 5. What contextual factors (i.e., school context, administrative support, time constraints, etc.) influence teachers' implementation of three-dimensional instruction embedded within ICE lessons?


Project Videos

2019 STEM for All Video Showcase

Title: Integrating Chemistry and Earth Science (ICE)

Presenter(s): Alan Berkowitz, Vonceil Anderson, Bess Caplan, Kevin Garner, & Jonathon Grooms


Engaging Students in Scientific Practices: Evaluating Evidence and Explanation in Secondary Earth and Space Science

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.

Award Number: 
2027376
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will examine alternative explanations for natural phenomena associated with extreme weather events, freshwater resource availability, and related topics in learning how to evaluate scientifically valid lines of evidence and explanation. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events. It is expected that engagement in these activities will help students gain proficiency in model-based reasoning, critical thinking, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information.

This 4-year Design and Development project will examine use of Model-Evidence Link (MEL) diagrams that are intended to help students cognitively construct mental scaffolds that assist their engagement in the practices of critical evaluation, plausibility appraisal, and knowledge construction related to science topics that are considered by some as controversial. Prior research has demonstrated the potential educational outcomes of using MEL diagrams, but this project will extend the previous work by examining an approach where students construct their own MEL diagrams (build-a-MELs, or baMELs). The project will examine the use of both pre-constructed MELs and baMELs for effectiveness in promoting student engagement in scientific reasoning and practices. The project will employ design-based research methodologies in pursuing answers to three research questions: (1) Do baMEL activities tested in multiple high school classroom settings promote critical evaluation, plausibility reappraisal, and  scientifically accurate knowledge construction about controversial Earth and space science topics? (2) How do these additional baMELs differ from pre-constructed MELs in promoting critical evaluation, plausibility reappraisal, and knowledge construction? And (3) To what extent does repeated use of both pre-constructed MELs and baMELs result in student engagement of scientific practices (i.e., asking critical questions, using model-based reasoning, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information)? The project will engage high school students taking Earth and space classes in selected schools of Georgia, New Jersey, and within Philadelphia. Teacher professional development opportunities associated with the project will include summer institutes, classroom supports, and mentoring sessions.

This project was previously funded under award #1721041.

Mathematical Learning via Architectural Design and Modeling Using E-Rebuild

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The project will examine how to collect data about students' learning from data generated as they play the game, how students learn mathematics using the simulation, and how the simulation can be included in middle school mathematics learning.

Lead Organization(s): 
Award Number: 
1720533
Funding Period: 
Tue, 08/01/2017 to Sat, 07/31/2021
Full Description: 

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. There is a need to connect mathematics to real world contexts and problems. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The learning platform will be flexible so teachers can customize tasks for their students. The project will examine how to collect data about students' learning from data generated as they play the game. The project will explore how students learn mathematics using the simulation and how the simulation can be included in middle school mathematics learning.

The project includes two major research questions. First, how will the design of a scalable game-based, design-centered learning platform promote coordination and application of math representation for problem solving? Second, how and under what implementation circumstances will using a scalable architectural game-based learning platform improve students multi-stranded mathematical proficiency (i.e., understanding, problem solving and positive disposition)? A key feature of the project is stealth-assessment or data collected and logged as students use the architectural simulation activities that can be used to understand their mathematics learning. The project uses a design-based research approach to gather data from students and teachers that will inform the design of the learning environment. The qualitative and quantitative data will also be used to understand what students are learning as they play the game and how teachers are interacting with their students. The project will include a mixed methods study to compare classrooms using the architectural activities to classrooms that are using typical activities.


Project Videos

2020 STEM for All Video Showcase

Title: E-Rebuild: Scalable Architectural Game for Math Learning

Presenter(s): Fengfeng Ke, Chih-Pu Dai, & Luke West


Science and Engineering Education for Infrastructure Transformation

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1721054
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Concord Consortium in collaboration with Purdue University will research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. This project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration. The project will deliver two innovations: 1) The Smart High School is an engineering platform for designing Internet of Things systems for managing the resources, space, and processes of a school based on real-time analysis of data collected by various sensors deployed by students on campus; and 2) the Virtual Solar World is a computational modeling platform for students to design, deploy, and connect virtual solar power solutions for their homes, schools, and regions. Six standards-aligned curriculum units based on these technologies will be developed to guide student learning and support educational research. Approximately 2,000 students from rural, suburban, and urban high schools in Indiana, Massachusetts, New Hampshire, and Ohio will participate in this research. project products and findings through the Internet, conferences, publications, and partner networks.

The research is designed to identify technology-enhanced instructional strategies that can simultaneously foster the growth of skills and self-efficacy in scientific reasoning, design thinking, and computational thinking, all of which are needed to build the future infrastructure. The focus on infrastructure transformation is aligned with NSF's vision of smart and connected communities. Although this project will use the context of smart and green infrastructure to engage students to solve real-world problems, the skills of scientific reasoning, design thinking, and computational thinking that they will acquire through meeting the challenges of this project can be transferrable to other topics and fields. Using a design-based research approach, a rich set of formative and summative data will be collected from these students for probing into three research questions: 1) To what extent does the integrated learning model help students develop and connect scientific reasoning, design thinking, and computational thinking skills?; 2) To what extent is students' interest in cognate careers affected by the authenticity of engineering design challenges?; and 3) How do the variations in the solutions to overcome the cognitive and practical difficulties of real-world problems impact learning outcomes and career interest? The data sources include pre/post-tests, process data, self-reports, observations, surveys, interviews, and participant information.

Examining Relationships Between Flipped Instruction and Students' Learning of Mathematics

This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.

Lead Organization(s): 
Award Number: 
1721025
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Instead of presenting new material in class and then assigning problems to be completed outside of class, flipped instruction involves students watching videos or reading new material outside of class and then completing their "homework" in class. Teachers' implementation of flipped instruction has increased dramatically in recent years, with more than two-thirds of teachers now reporting flipping a lesson, if not an entire course. Although popular media and philanthropic organizations have given a great deal of attention and financial support to flipped instruction, little is known about how teachers implement it and what benefits and drawbacks flipped instruction has in contrast with non-flipped instruction. This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics. This design and development is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning. These findings can inform teacher educators in better aligning their instruction to instructional formats that correlate with increased student learning outcomes.

Using mixed-methods techniques, the study will look at the nature of the activities and interactions occurring in mathematics classrooms and assess their quality so that the researchers may distinguish high-quality from low-quality univocal discourse, high-quality from low-quality dialogic discourse, and high cognitive demand from low cognitive demand tasks. Working in 40 algebra classrooms -- 20 implementing some form of flipped instruction and 20 serving as a non-flipped basis for comparison -- the project will address the following research questions using a correlational design and multilevel modeling techniques: RQ1. What are salient factors entailed in flipped instruction in secondary algebra? RQ2. What associations, if any, exist among factors entailed in teachers' implementation of flipped algebra instruction and students' learning of algebra as measured on a state-mandated end-of-course assessment and on a concept-of-variable inventory?

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Forbes)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1720838
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

Designing a Middle Grades Spatial Skills Curriculum

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

Lead Organization(s): 
Award Number: 
1720801
Funding Period: 
Sat, 07/01/2017 to Tue, 06/30/2020
Full Description: 

The ability to make spatial judgements and visualize has been shown to be a strong indicator of students' future success in STEM-related courses. The project is innovative because it uses a widely available gaming environment, Minecraft, to examine spatial reasoning. Finding learning experiences which support students' spatial reasoning in an authentic and engaging way is a challenge in the field. This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform. The resources will incorporate hands-on learning and engage students in building virtual structures using spatial reasoning. The curriculum materials are being designed to be useful in other middle grades contexts.

The study is a design and development study that will design four training modules intended to improve spatial reasoning in the following areas: rotation, mental slicing, 2D to 3D transformation and perspective taking. The research questions are: (1) Does a Minecraft-based intervention that targets specific spatial reasoning tasks improve middle grade learners' spatial ability? (2) Does spatial skills growth differ by gender? The experimental design will compare the influence of the virtual spatial learning environment alone vs. the use of design challenges designed specifically for the spatial skills. The data collected will include assessments of spatial reasoning and feedback from teachers' who use the materials. The spatial skills measures will be administered as a pre-test, post-test, and six-month follow-up assessment to measure long term effects.


Project Videos

2020 STEM for All Video Showcase

Title: Building Spatial Skills with Minecraft

Presenter(s): Nick Lux, Barrett Frank, & Bryce Hughes


Learning in Places: Field Based Science in Early Childhood Education

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Lead Organization(s): 
Award Number: 
1720578
Funding Period: 
Sat, 07/01/2017 to Wed, 06/30/2021
Full Description: 

Recent evidence suggests that reasoning and making decisions about ecological systems is a cultural activity that impacts participation in the core scientific practices of observation, evidence use, and claims making. This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Using design-based research, the project team will collaborate with teachers, parents of participating students, and community garden educators to collectively design and develop four key components: 1) field-based curricular units for K-3 classrooms; 2) a model of family and community engagement that strengthens cultural relevance and equity in field-based science learning; 3) a pilot program of teacher professional development that informs future scaling efforts; and 4) research that unpacks student learning and teacher instructional practices that support children?s complex ecological reasoning and the cultural contexts of such knowledge. Data sources will include video, interviews, surveys, and student-created artifacts. A mixed-methods approach will be used to produce research findings at multiple levels including: student learning about complex ecological phenomena and field-based practices; classroom-level learning and high-leverage teaching practices in model units at each grade level; impacts of co-design on professional learning and practice; and family and community organizations learning and engagement in field-based science education. The project will be carried out by a research-practice-community partnership in Seattle, Washington that includes learning scientists (University of Washington), K-3 teachers and school administrators (Seattle Public Schools), garden educators (Seattle Tilth), and parents of participating students. In total, eight schools, 32 teachers, 800 students, and 32 families are expected to participate.

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Chandler)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1719872
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

CAREER: Investigating Changes in Students' Prior Mathematical Reasoning: An Exploration of Backward Transfer Effects in School Algebra

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions.

Lead Organization(s): 
Award Number: 
1651571
Funding Period: 
Sat, 07/01/2017 to Thu, 06/30/2022
Full Description: 

As students learn new mathematical concepts, teachers need to ensure that prior knowledge and prior ways understanding are not negatively affected. This award explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate students in four Algebra I classrooms as they learn quadratic functions. The PI will examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. More generally, this award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. An advisory board of scholars with expertise in mathematics education, assessment, social interactions, quantitative reasoning and measurement will support the project. The research will occur in diverse classrooms and result in presentations at the annual conferences of national organizations, peer-reviewed publications, as well as a website for teachers which will explain both the theoretical model and the findings from the project. An undergraduate university course and professional development workshops using video data from the project are also being developed for pre-service and in-service teachers. Ultimately, the research findings will generate new knowledge and offer guidance to elementary school teachers as they prepare their students for algebra.

The research involves three phases. The first phase includes observations and recordings of four Algebra I classrooms and will test students' understanding of linear functions before and after the lessons on quadratic functions. This phase will also include interviews with students to better understand their reasoning about linear function problems. The class sessions will be coded for the kind of reasoning that they promote. The second phase of the project will involve four cycles of design research to create quadratic and linear function activities that can be used as instructional interventions. In conjunction with this phase, pre-service teachers will observe teaching sessions through a course that will be offered concurrently with the design research. The final phase of the project will involve pilot-applied research which will test the effects of the instructional activities on students' linear function reasoning in classroom settings. This phase will include treatment and control groups and further test the hypotheses and instructional products developed in the first two phases.

Pages

Subscribe to Reasoning Skills