Teacher Outcomes

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

Case Studies of a Suite of Next Generation Science Instructional, Assessment, and Professional Development Materials in Diverse Middle School Settings

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

Lead Organization(s): 
Award Number: 
1907944
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

New state science standards are ambitious and require important changes to instructional practices, accompanied by a coordinated system of curriculum, assessment, and professional development materials. This project addresses a gap between vision and implementation of such standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on the design of such materials using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations. Classes of urban students in two states will collect data on local insect species with the goal of understanding, sharing, and critiquing environmental management solutions. An integrated learning technology system, the Learning Navigator, draws on big data to organize student-gathered data, dialogue, lessons, an assessment information. The Learning Navigator will also amplify the teacher's role in guiding and fostering next generation science learning. This project advances the field through an in-depth exploration of the goals for the standards documents. The study begins to address questions about what works when, where, and for whom in the context of the Next Generation Science Standards.

The project uses a series of case studies to create, test, evaluate and refine the system of instructional, assessment and professional development materials as they are enacted in two distinct urban school settings. It is designed with 330 students and 22 teachers in culturally, racially and linguistically diverse, under-resourced schools in Pennsylvania and California. These schools are located in neighborhoods that are economically challenged and have students who demonstrate patterns of underperformance on state standardized tests. It will document the process of team co-construction of Next Generation Science-fostering instructional materials; develop assessment tasks for an instructional unit that are valid and reliable; and, track the patterns of use of the instructional and assessment materials by teachers. The study will also record if new misconceptions are revealed as students develop Next Generation Science knowledge,  comparing findings across two diverse school locations in two states. Data collection will include: (a) multiple types of data to establish validity and reliability of educational assessments, (b) the design, evaluation and use of a classroom observation protocol to gather information on both frequency and categorical degree of classroom practices that support the vision, and (c) consecutive years of ten individual classroom enactments through case studies analyzed through cross-case analyses. This should lead to stronger and better developed understandings about what constitutes strong Next Generation Science learning and the classroom conditions, instructional materials, assessments and teacher development that foster it.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Reasoning Language for Teaching Secondary Algebra

This project proposes to study the teaching and learning of algebra in grades 7-9, with a specific focus on the ways in which classroom language explicitly describes properties of and relationships among algebraic objects. The project seeks to investigate the bi-directional relationship between reasoning-rich algebraic discourse and the mathematical meanings students hold for core algebraic concepts such as equations, the equation-solving process, and functions.

Project Email: 
Award Number: 
1908825
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

Decades of research have demonstrated that stronger mathematics classroom discourse, along with the use and connection of multiple mathematical representations, correlates positively with gains in student learning. This relationship is particularly salient in algebra, where diversifying the representations available to students can provide important supports for the development of conceptual understanding. The Reasoning Language for Teaching Secondary Algebra (ReLaTe-SA) project proposes to study the teaching and learning of algebra in grades 7-9, with a specific focus on the ways in which classroom language explicitly describes properties of and relationships among algebraic objects. The project seeks to investigate the bi-directional relationship between reasoning-rich algebraic discourse and the mathematical meanings students hold for core algebraic concepts such as equations, the equation-solving process, and functions. With a focus on the teacher, ReLaTe-SA will analyze classroom narratives about algebraic concepts and procedures and provide an 80-hour professional development program designed to support teachers in developing stronger explanations of algebraic objects, their properties, and their relationships.

The ReLaTe-SA project will investigate three aspects of teacher discourse practice related to algebra. First, the project will study the discourse and discourse routines that teachers use to explain algebraic objects, their properties, and their relationships. This will be accomplished through the development and deployment of an assessment called the Survey of Algebraic Language and Reasoning to identify teachers' discursive routines and narratives in the context of algebra. The instrument asks teachers to interpret student work and explanations by describing the student's mathematical reasoning and underlying mathematical understandings. Second, the project will support potential growth in teachers' algebraic discourse practices through an 80-hour professional development intervention focused on discourse in algebra. The impact of this intervention will be measured by changes to teachers' response patterns on the Survey of Algebraic Language and Reasoning, analyses of teachers' work within the professional development, and the analysis of classroom observations after the professional development has concluded. Third, the project will seek to understand the ways in which teachers develop lessons that explicitly focus on the development of students' algebraic reasoning and discourse. This goal will be realized through analyses of the tasks, plans, and implementations of mathematics lessons in participating teachers' classrooms. Three cohorts of 12 teachers each will be recruited for the project. Based on the results of this exploratory project, the team intends to follow up with a larger-scale study of the professional development and its impact on the teaching and learning of algebra.

Alternative video text
Alternative video text: 

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908319
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Jabon)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908311
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Wilson)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908185
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Matuk)

This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.

Lead Organization(s): 
Award Number: 
1908557
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Vacca)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Lead Organization(s): 
Award Number: 
1908142
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Pages

Subscribe to Teacher Outcomes