Student Outcomes

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Wilson)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Lead Organization(s): 
Award Number: 
1813538
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Partner Organization(s): 
Award Number: 
1814263
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Science Communities of Practice Partnership

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

Award Number: 
1813012
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable. The working model involves reciprocal communities of practice, which are groups of teachers, leaders and administrators that focus on practical tasks and how to achieve them across these stakeholder perspectives. The project will provide evidence about the specific components of the professional development model that support sustainable improvement in science teaching, will test the ways that teacher ownership and organizational conditions mediate instructional change, and will develop four tools for facilitating the teacher learning and the accompanying capacity building. In this way, the project will produce practical knowledge and tools necessary for other school districts nationwide to create professional learning that is tailored to their contexts and therefore sustainable.

This study posits that communication among district teachers, teacher leaders, and administrators, and a sense of ownership for improved instruction among teachers can support sustainable change. As such, it tests a model that fosters communication and ownership through three reciprocal communities of practice--one about district leadership including one teacher per school, coaches and university faculty; another about lesson study including teachers, coaches and faculty; and a third about instructional innovation including teachers and administrators, facilitated by coaches. The research design seeks to inform what the communities of practice add to the effects in a quasi-experimental study involving 72 third to fifth grade teachers and 6500 students in four urban school districts. Mixed methodologies will be used to examine shifts in science teaching over three years, testing the professional development model and the mediating roles of reform ownership and organizational conditions.

Determining Teachers' Baseline Practice and Alignment Prior to a Systemic Curriculum Change

In this study, researchers will collaborate with Baltimore City Public Schools to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the NGSS. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms.

Partner Organization(s): 
Award Number: 
1822029
Funding Period: 
Sun, 04/01/2018 to Sun, 03/31/2019
Full Description: 

The goal of this research is to document current teaching practices prior to the systemic integration of the Next Generation Science Standards (NGSS) in Baltimore City Public schools. In this study, UMBC will collaborate with Baltimore City Public Schools (City Schools) to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the Next Generation Science Standards. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms. Success will be measured by changes in teacher attitudes, enhancement of teacher pedagogical skills and student learning gains. Sixty teachers, and over 4,500 students in Baltimore City will be directly impacted through the professional development and curriculum enactment efforts proposed. As a full partner in the project, the City Schools' leadership will also learn what works, for whom, and under what conditions in schools that are representative of their diverse district. Lessons learned have the potential to inform the implementation of other new reform initiatives within City Schools and beyond. Findings from the proposed research have the potential to advance our understanding of innovative professional development strategies and their impact on classroom practices and student learning.

This project focuses on a national need of models for high quality professional development that directly tie specific strategies to classroom-based instructional changes and student learning outcomes. One particular shift in classroom practice that is fundamental for the classroom implementation of NGSS is scientific discourse and argumentation. One particular strategy that has shown promise for supporting teachers' use of strategies supporting argumentation is the use of controlled practice teaching. The proposed study explicitly attempts to determine the impact of the controlled practice-teaching using a quasi-experimental design. The research plan involves middle science teachers being assigned to one of two experimental conditions (PD including or excluding a controlled practice-teaching component) and then to investigate potential differences among the two treatments and control conditions related to changes in attitudes toward NGSS, classroom practices and impact on student learning. The researcher hypothesizes that the inclusion of control-practice teaching that is imbedded in a sustained professional development program will promote the development of teacher pedagogical skills aligned with NGSS more effectively than sustained professional development that does not include a control-practice component.

Strengthening Data Literacy across the Curriculum (SDLC)

This project is developing and studying high school curriculum modules that integrate social justice topics with statistical data investigations to promote skills and interest in data science among underrepresented groups in STEM.

Award Number: 
1813956
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

The Strengthening Data Literacy across the Curriculum (SDLC) project is an exploratory/early stage design and development effort that aims to promote understanding of core statistical concepts and interest in quantitative data analysis among high school students from underrepresented groups in STEM. Led by a collaboration of researchers and developers at Education Development Center (EDC), statistics educators at California Polytechnic State University (Cal Poly), and technology developers at The Concord Consortium, the project is creating and studying a set of curriculum modules targeted to high school students who are taking mathematics or statistics classes that are not at advanced-placement (AP) levels. Iteratively developed and tested in collaboration with high school statistics and social studies teachers, the modules consist of applied data investigations structured around a four-step data investigation cycle that engage students in explorations of authentic social science issues using large-scale data sets from the U.S. Census Bureau. The project hypothesizes that students who engage in guided investigations using data visualization tools to explore and visualize statistical concepts may develop deeper understandings of these concepts as well as the data investigation process. Similarly, high school students – particularly those from historically marginalized groups who are underrepresented in STEM fields – may develop greater interest in statistics when they can use data to examine patterns of social and economic inequality and questions related to social justice.

One module, Investigating Income Inequality in the U.S., focuses on describing, comparing, and making sense of quantitative variables. Students deepen their understanding of this content by investigating questions such as: How have incomes for higher- and lower-income individuals in the U.S. changed over time? How much income inequality exists between males and females in the U.S.? Does education explain the wage gap between males and females? Another module, Investigating Immigration to the U.S., focuses on describing, comparing, and making sense of categorical variables. Students investigate questions such as: Are there more immigrants in the U.S. today than in previous years? Where have immigrants to the U.S. come from, now and in the past? Are immigrants as likely as the U.S. born to be participating in the labor force, after adjusting for education? Students conduct these analyses using the Common Online Data Analysis Platform (CODAP), an open-source set of tools that supports data visualization and conceptual understanding of statistical ideas over calculations. Lessons encourage collaborative inquiry and provide students with experiences in multivariable analysis—an important domain that is underemphasized in current high school mathematics and statistics curricula but critical for analyzing data in a big-data world.

The project is using a mixed methods approach to study three primary research questions: 1) What is the feasibility of implementing SDLC modules, and what supports may teachers and students need to use the modules? 2) In what ways may different features and components of the SDLC modules help to promote positive student learning and interest outcomes? 3) To what extent do students show greater interest in statistics and data analysis, as well as improved understandings of target statistical concepts, after module use? To investigate these questions, the project has worked with 12 mathematics and six social studies teachers in diverse public high schools in Massachusetts and California to conduct iterative research with over 600 students. Through this work, the project aims to build knowledge of curriculum-based approaches that prepare and attract more diverse populations to data science fields.

Improving Multi-Dimensional Assessment and Instruction: Building and Sustaining Elementary Science Teachers' Capacity through Learning Communities (Collaborative Research: Lehman)

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813938
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its main goal is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science. The three dimensions will include disciplinary core ideas, science and engineering practices, and crosscutting concepts. These dimensions are described in the Framework for K-12 Science Education (National Research Council; NRC, 2012), and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The project will work closely with teachers to co-develop usable assessments and rubrics and help them to learn about three-dimensional assessment and instruction. Also, the project will work with teachers to test the developed assessments in diverse settings, and to create an active, online community of practice.

The two research questions will be: (1) How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?; and (2) In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers' formative assessment practices to support multi-dimensional science instruction? The research and development components of this project will produce assessments and rubrics, which can directly impact students and teachers in the districts and states that have adopted the NGSS, as well as those that have embraced the vision of science teaching and learning embodied in the NRC Framework. The project will consist of five major tasks. First, the effort will iteratively develop assessments and rubrics for formative use, using an evidence-centered design approach. Second, it will collect data from evidence-based revision and redesign of the assessments from teachers piloting the assessments and rubrics, project cognitive laboratory studies with students, and an external review of the assessments design products. Third, it will study teachers' classroom use of assessments to understand and document how they blend assessment and instruction. The project will use pre/post questionnaires, video recordings, observation field notes, and pre/post interviews. Fourth, the study will build the capacity of participating teachers. Teacher Collaborators (n=9) will engage in participatory design of the assessment tasks and act as technical assistants to the overall implementation process. Teacher Implementers (n=15) will use the assessments formatively as part of their instructional practice. Finally, the work will develop a community of learners through the development of a technical assistance infrastructure, and leveraging teacher expertise to formatively assess students' work, using the assessments designed to be diagnostic and instructionally informative. External reviewers and an advisory board will provide formative feedback on the project's processes and summative evaluation of the project's results. The main outcomes of this endeavor will be prototypes of elementary science multi-dimensional assessments and new knowledge for the field on the underlying theory for developing teachers' capacity for engaging in multi-dimensional science instruction, learning, and assessment.

A Practice-based Online Learning Environment for Scientific Inquiry with Digitized Museum Collections in Middle School Classrooms

This project will develop and study a prototype online learning environment that supports student learning via Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience), which uses authentic research investigations with digitized collections from natural history museums. 

Lead Organization(s): 
Award Number: 
1812844
Funding Period: 
Fri, 06/15/2018 to Mon, 05/31/2021
Full Description: 

There are an estimated 2-4 billion specimens in the world's natural history collections that contain the data necessary to address complex global issues, including biodiversity and climate. Digitized natural history collections present an untapped opportunity to engage learners in crucial questions of science with far-reaching potential consequences via object-based research investigations. This project will develop and study a prototype online learning environment that supports student learning via Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience). EPIC Bioscience uses authentic research investigations with digitized collections from natural history museums. The project team will create a curriculum aligned with the Next Generation of Science Standards (NGSS) for middle school students, emphasizing a major disciplinary core idea in grades 6-8 life science, Ecosystems: Interactions, Energy, and Dynamics. The project has three major goals: 1) Develop an online learning environment that guides students through research investigations using digitized natural history collections to teach NGSS life science standards. 2) Investigate how interactive features and conversational scaffolds in the EPIC Bioscience learning environment can promote deeper processing of science content and effective knowledge building. 3) Demonstrate effective approaches to using digitized collections objects for contextualized, research-based science learning that aligns to NGSS standards for middle school classrooms.

The project will examine how and when interactive features of a digital learning environment can be combined with deep questions and effective online scaffolds to promote student engagement, meaningful collaborative discourse, and robust learning outcomes during research with digitized museum collections. Research activities will address: How can interactive features of EPIC Bioscience help students learn disciplinary core ideas and cross cutting concepts via science practices through collections-based research? How can effective patterns of collaborative scientific discourse be supported and enhanced during online, collections-based research? How does the use of digitized scientific collections influence students' levels of engagement and depth of processing during classroom investigations? A significant impact of the proposed work is expanded opportunities for research with authentic museum objects for populations who are traditionally underserved in STEM and are underrepresented in museum visitor demographics (Title I schools, racial/ethnic minorities, and rural school populations). Research activities will engage over 1,500 Title I and rural students (50 classes across three years) in meaningful research investigations with collections objects that address pressing global issues.

Moving Beyond Pedagogy: Developing Elementary Teachers' Adaptive Expertise in Using the Epistemic Complexity of Science

The Next Generation Science Standards (NGSS) emphasize the integration of scientific knowledge and the practices of science, a recognition that science classrooms are complex learning environments. Meeting this expectation requires teachers to move beyond traditional routines of practice to become adaptive experts who can adjust their teaching to maximize learning in varied classroom situations.

Lead Organization(s): 
Award Number: 
1812576
Funding Period: 
Tue, 05/15/2018 to Sat, 04/30/2022
Full Description: 

The Next Generation Science Standards (NGSS) emphasize the integration of scientific knowledge and the practices of science, a recognition that science classrooms are complex learning environments. Meeting this expectation requires teachers to move beyond traditional routines of practice to become adaptive experts who can adjust their teaching to maximize learning in varied classroom situations. A teacher who has adaptive expertise is defined as someone who can self-assess and strategically adjust decision-making before, during and after teaching episodes. To become adaptive experts, teachers must understand the foundational ways that scientific knowledge is advanced and develop knowledge of, and practices related to, using argument, language, and dialogical environments--individually and collectively--as tools for learning science. To effectively use these tools requires teachers to shift from viewing science teaching as the transfer or replication of knowledge through routines of practices to one in which students are participants in a more cognitively based approach to learning. How teachers develop adaptive expertise for NGSS-aligned learning environments is still little understood. This project will examine the complex nature of the relationship between these learning tools and teacher orientation that enables teachers to develop adaptive expertise over the course of a multi-year professional development program.

The project will work with 150 Grade 3-5 teachers in Iowa and Alabama to implement a three-year professional development program to assist teachers develop adaptive expertise. Through implementation of an argument-based inquiry approach focused on development of adaptiveness, teachers will be supported as they shift their expertise from routine to adaptiveness. Project data will include teachers' implementation of the approach, their understanding of science argument, and their shifting epistemic orientation. The project will examine selected case studies of teachers to better understand the variations in development of adaptive expertise. The project outcome will be a model of adaptive expertise that can be used by in-service and pre-service educators to advance teacher practices towards adaptive expertise. The aim is to design ways to transfer adaptive expertise to students in STEM. The mixed-method project will integrate analyses with a focus on understanding complexity, using large-scale quantitative data.

Measuring Early Mathematical Reasoning Skills: Developing Tests of Numeric Relational Reasoning and Spatial Reasoning

The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR).

Award Number: 
1721100
Funding Period: 
Fri, 09/15/2017 to Tue, 08/31/2021
Full Description: 

Numeric relational reasoning and spatial reasoning are critical to success in later mathematics coursework, including Algebra 1, a gatekeeper to success at the post-secondary level, and success in additional STEM domains, such as chemistry, geology, biology, and engineering. Given the importance of these skills for later success, it is imperative that there are high-quality screening tools available to identify students at-risk for difficulty in these areas. The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR). The measures will be intended for use by teachers and school systems to screen students to determine who is at-risk for difficulty in early mathematics, including students with disabilities. The measures will help provide important information about the intensity of support that may be needed for a given student. Three forms per grade level will be developed for both the T-NRR and T-SR with accompanying validity and reliability evidence collected. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The development of the T-NRR and T-SR measures will follow an iterative process across five phases. The phases include (1) refining the construct; (2) developing test specifications and item models; (3) developing items; (4) field testing the items; and (5) conducting validity studies. The evidence collected and evaluated during each phase will contribute to the overall evaluation of the reliability of the measures and the validity of the interpretations made using the measures. Item models, test specifications, and item development will be continuously evaluated and refined based on data from cognitive interviews, field tests, and reviews by mathematics educators, teachers of struggling students, teachers of culturally and linguistically diverse populations, and a Technical Advisory Board. In the final phase of development of the T-NRR and T-SR, reliability of the results will be estimated and multiple sources of validity evidence will be collected to examine the concurrent and predictive relation with other criterion measures, classification accuracy, and sensitivity to growth. Approximately 4,500 students in Grades K-2 will be involved in all phases of the research including field tests and cognitive interviews. Data will be analyzed using a two-parameter IRT model to ensure item and test form comparability.


Project Videos

2020 STEM for All Video Showcase

Title: Measuring Early Mathematical Reasoning Skills

Presenter(s): Leanne Ketterlin Geller


Networking Urban Resources with Teachers and University to Enrich Early Childhood Science (NURTURES) Phase II: Expansion and Evaluation

Building on successful prior work, this project simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning.

Lead Organization(s): 
Award Number: 
1721059
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

Building on successful prior work, this University of Toledo project, Networking Urban Resources with Teachers and University to enRich Early Childhood Science (NURTURES): Researching the impact of teacher professional development and family engagement on PreK-3 achievement, simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning. Teachers participate in a two-week summer professional development program and receive support across the school year in the form of individualized coaching and participation in professional learning communities. Families receive science inquiry packets (sent home from school) four times a year and attend community STEM events throughout the year. Inquiry packets and community events encourage science inquiry, discourse, and further exploration of key science ideas. Project participants will include 120 teachers, 2,400 PreK-3 children and over 7,200 family members in Ohio and Michigan.

Extending the initial NURTURES project, developed with NSF Math and Science Partnership funding, this follow-up project aims to: 1) Transform early childhood science teaching based upon Next Generation Science Standards (NGSS) to measurably increase student science, literacy, and math achievement, and 2) Engage families of PreK-3 students in science inquiry practices to measurably improve student science, literacy, and math achievement. A particularly important facet of this follow-up project is the research effort to parse and understand how each component (teacher professional development versus family engagement) impacts student learning. The project will use a randomized control group research design (RCT) to compare student achievement outcomes among three groups: Children whose teachers received professional development and family engagement activities, children whose teachers received only professional development, and a control group. The project will use standardized tests (the TerraNova Complete Battery) to measure impact on learning gains in science, mathematics, reading, and early literacy for children in grades K- 3. The Lens on Science assessment will measure science learning in preschool children. This project will result in an NGSS-based program for teachers and families that has been systematically tested and may ultimately be scaled up to an impact study and dissemination at a broad level.

Pages

Subscribe to Student Outcomes