Tomorrow's domestic STEM workforce demands that students bring the ability to explain real-world phenomena and solve problems collaboratively. In many school districts, a significant gap persists between this ambitious vision and the realities of current instruction. One promising approach to bridge this gap is the use of high-quality instructional materials (HQIM), which have been shown to improve science teaching and learning. However, school systems often face serious challenges in selecting, adopting, and implementing these materials in ways that lead to consistent implementation across classrooms and lasting change. This project will establish a research-practice partnership between the University of Colorado Boulder and the Weld RE-4 School District in Colorado to better understand and address these challenges. The project will generate new understandings that support the translation of research on how curriculum can improve teaching and learning into practice for a whole school district, and yield insights into how school districts navigate organizational dynamics and competing priorities during curriculum adoption.
Projects
The goal of this project is to develop and pilot test a limited number of free computer-based instructional activities that improve student graph comprehension, aimed especially at science students in grades 7 and 8. Because of growing interest in use of online resources for teaching and learning, this work is potentially transformative for a wide range of audiences, including teachers, students, researchers, and the developers and publishers of instructional materials across vSTEM areas and grades.
This project creates eight half-year units in two subject areas—Force and Motion, and Energy Systems— for three grade bands, pre-K–1, 2-3 and 4–6. These projects integrate engineering, science, math literacy and art in the context of design, construction and testing of toys using inexpensive or recycled materials.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This project examines the effect of four different types of induction programs (district-based, e-mentoring, university-based, intern programs) on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.
This research study is examining the persistence of improved teacher skills achieved during the K-2 Science & Technology Assistance for Rural Teachers and Small Districts project (K-2 STARTS). K-2 STARTS provided four years of professional development to teachers in 16 rural school districts with high populations of traditionally underserved students. Project data indicates that the project increased teacher content knowledge, pedagogical content knowledge, abilities to integrate science and literacy and to use research-based instructional strategies.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. The project aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people.
The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.
The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.
The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.
PATHWAYS has two primary objectives: (1) To develop mathematics teachers who approach classrooms with a researcher's mindset, making instructional decisions based on empirical data; (2) To engage aspiring mathematics teachers in systematic formal mathematics education research, thereby providing foundations for participation in mathematics education graduate programs.
The RISE project is creating curriculum resources for dual language learners (DLLs) in science, technology and engineering (STE). Participants include teachers in pre-K programs in the Boston area selected to target Hispanic and Chinese students and their families. The curriculum will be based on the Massachusetts framework, one of only a few states with pre-K standards. The evaluation will monitor both the progress of the research and development and the dissemination to the target audiences.
While more accessible online learning opportunities that reflect everyday teaching challenges are becoming more available, most of these more flexible professional development experiences are being offered by colleges and universities to teachers who are not yet in the classroom. This situation provides an opportunity to explore how innovations in teacher professional development can be woven into school districts’ regular professional development work with its teachers. This partnership development project will create a shared vision and plan for making digitally-based teaching tasks available to elementary math and science teachers so they can learn at any time and from anywhere.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.
This project will develop and test a cyberlearning professional-development model that builds on the successful Curriculum Customization Service model implemented in Denver with EarthComm. The cyberlearning system is tested with the Project Based Inquiry Science (PBIS) curriculum - a proven comprehensive middle school science curriculum. The cyberlearning system is evaluated for scalability, affordability, flexibility, and effectiveness for changing teacher practice and student learning.
This project will develop and test a cyberlearning professional-development model that builds on the successful Curriculum Customization Service model implemented in Denver with EarthComm. The cyberlearning system is tested with the Project Based Inquiry Science (PBIS) curriculum - a proven comprehensive middle school science curriculum. The cyberlearning system is evaluated for scalability, affordability, flexibility, and effectiveness for changing teacher practice and student learning.