Projects

08/01/2022

This study will investigate factors influencing teacher change after professional learning (PL) experiences and will examine the extent to which modest supports for science and engineering teaching in grades 3-5 sustain PL outcomes over the long term, such as increases in instructional time devoted to science, teacher self-efficacy in science, and teacher use of reform-oriented instructional strategies aligned with the Next Generation Science Standards.

08/01/2022

This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

08/01/2022

The project will develop a teacher professional learning (PL) model that focuses on middle-school biological sciences in addressing real world problems. Systems thinking is central to understanding biology systems. Game design has been shown to help develop systems thinking in teachers and students. Students will participate in PL to illustrate the value of distributed expertise by sharing their knowledge of computer. Teachers will adapt their existing curriculum and will co-design games with students to experience participatory practices.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

07/15/2022

This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.

07/15/2022

The project will design, develop, and test a research-based professional development (PD) approach that will ensure that teachers, and ultimately their middle-school students, have the knowledge to act in a way that promotes zero net loss of biodiversity in their communities. Through their participation in the PD, teachers will be equipped to plan for and implement NGSS-aligned instruction, facilitate student identification and understanding of biodiversity and environmental justice issues in their local community, and foster student capacity to take action. Students will come to understand that biodiversity is a global issue that they can influence at the local level, and will become empowered, in both their knowledge and their agency, to be leaders in solving biodiversity problems in their communities.

07/15/2022

This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.

07/01/2022

This project is working to develop, implement, and research the introduction of data experiences and practices into a series of interdisciplinary, middle school project-based learning modules. The project examines how interdisciplinary data education can provide opportunities for students to take more control of their own learning and develop positive identities related to data, through integration with social studies and science topics. Curriculum modules and teaching resources produced by the project serve as guides for subsequent efforts at integrating data science concepts into teaching and learning in various subject areas.

07/01/2022

This project builds on a successful introductory computer science curriculum, called Scratch Encore, to explore ways to support teachers in bringing together—or harmonizing—existing Scratch Encore instructional materials with themes that reflect the interests, cultures, and experiences of their students, schools, and communities. In designing these harmonized lessons, teachers create customized activities that resonate with their students while retaining the structure and content of the original Scratch Encore lesson.

07/01/2022

Covariational reasoning, or the ability to reason about relationships as quantities change together, is one way of thinking that can provide a foundation for students to build their more abstract algebraic knowledge. This research builds a foundation for integrating education and research at the intersection of students’ developing algebraic knowledge, covariational reasoning, and new educational technologies to create a new path into algebra. This path can help remove barriers that have historically restricted access to mathematics and STEM coursework and careers.

07/01/2022

This project aims to meet this need by developing PreK-5, equity-oriented, field-based, interdisciplinary curricular materials that support students' socioecological reasoning and sustainable decision making. The science learning experiences will be integrated across disciplines from literacy to civic and social studies lessons. The curricular materials will be part of a science education model that facilitates family engagement in ways that transform relations between educators, families, and students' science learning. The curricular activities will be co-designed with teachers while using local nature and culture as a resource.

07/01/2022

This project seeks to understand how children learn about place value by studying different representations of multi-digit numbers (written number symbols, heard number names) and how prior knowledge of number influences children’s’ learning. Knowing more about multi-digit number learning will help to create teaching and curriculum resources that better support children’s learning.

07/01/2022

This project aims to meet this need by developing PreK-5, equity-oriented, field-based, interdisciplinary curricular materials that support students' socioecological reasoning and sustainable decision making. The science learning experiences will be integrated across disciplines from literacy to civic and social studies lessons. The curricular materials will be part of a science education model that facilitates family engagement in ways that transform relations between educators, families, and students' science learning. The curricular activities will be co-designed with teachers while using local nature and culture as a resource.

07/01/2022

This project builds on a successful introductory computer science curriculum, called Scratch Encore, to explore ways to support teachers in bringing together—or harmonizing—existing Scratch Encore instructional materials with themes that reflect the interests, cultures, and experiences of their students, schools, and communities. In designing these harmonized lessons, teachers create customized activities that resonate with their students while retaining the structure and content of the original Scratch Encore lesson.

07/01/2022

This project aims to create and study an Equitable and Interactive Mathematical Modeling (EIM2) program that positions students as decision makers in their own learning. Despite the value of connecting students’ life experiences with their mathematical learning, the practical implementation of this strategy has proven challenging in a classroom setting. EIM2 addresses this issue by supporting students to engage in equitable mathematical modeling, a process of using mathematics to analyze and quantify scenarios through a lens of equity.

06/15/2022

This project is developing curricular materials that utilize best teaching practices in improving student understanding of statistics and data science for use in high school Algebra I, Algebra II, and Geometry courses.  Although teachers are encouraged to integrate statistics and data science in these kinds of high school courses, teachers do not have sufficient access to resources to accomplish this effectively. The distinctive feature of these curricular materials is the use of simulation-based inference methods, data visualization, and the entire statistical investigation process to improve students’ understanding of the relevance and power of statistics because these approaches are central to statistical thinking and practice.

06/01/2022

This project will develop and study co-learning, community-engaged educational programs that center STEM education pipelines and pathways for gifted Black girls. The central aim is to bring about an actionable theory of change at the elementary level to foster a sense of belonging in STEM, early STEM exploration and development, and nurturing a STEM identity, through critical and culturally relevant experiential learning. The project will also develop curricular materials for gifted Black girls and their families (See Me in STEM) as well as professional development materials for teachers (Teachers as Talent Catalysts) as part of the educational integration plan.

06/01/2022

In this project, we examine middle-school students’ understandings of coordinate systems and frames of reference prior to examining their graph construction and interpretation. This focus allows us to design instructional materials that can support students’ graphing understandings in ways that avoid or mitigate how persistent challenges in students’ graphing understandings identified in the research literature.

05/15/2022

This project seeks to investigate the possibilities and challenges of using a participatory approach to research and design, centering Black, Indigenous, Latinx, and Hmong students and their families in imagining and creating change. The project will generate new knowledge about the possibilities and limitations of participatory design research (PDR) as a method for advancing equity in mathematics education through PDR cycles at three middle schools over the five years of the project. This approach has the potential to disrupt inequitable practices of mathematics education as well as undemocratic processes for making decisions about mathematics education. Further, it will be a catalyst for developing racially just practices and processes in mathematics education.