Projects

02/15/2022

This project advances the understanding of teaching and learning of algebra in grades 6 through 12 by using a methodology that leverages the cumulative power of an analysis of many studies on a topic. This work will synthesize results aggregated from 40 years of research in the field of mathematics education and develop a unified framework to inform parents, students, teachers, other educators, and researchers.

02/01/2022

This study will further the field's understanding of the role that science teachers play in adapting their instruction during a public health crisis, how they address emergent ideas throughout the unfolding of the pandemic, and the impacts that the pandemic has had on science teachers themselves.

09/01/2021

High school students in many rural school districts have limited access to advanced STEM coursework and advanced technologies, including high-speed Internet. Rural school districts face difficulties in recruiting and retaining STEM teachers. In many cases, rural STEM teachers need additional training and support. The project will identify these, and other barriers rural teachers face and create professional development for teachers.

09/01/2021

This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.

09/01/2021

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

09/01/2021

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes.

09/01/2021

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

09/01/2021

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

09/01/2021

The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/01/2021

The Learning by Evaluating (LbE) project will develop, refine, and test an educational innovation in which 9th grade students evaluate sample work as a starting point in engineering design cycles. Students will compare and discuss the quality and fit to context of completed design artifacts. Teachers will collaboratively review and refine the LbE approaches and map the LbE materials into the curriculum.

08/01/2021

This study addresses two open questions in mathematics education and teacher learning research related to groupwork monitoring. Using contemporary information visualization techniques and open-source tools, alongside a video-based coaching activity, teachers will a) analyze classroom video records featuring group math discussions and b) uncover and investigate their specific interactions with student groups as well as their overall approach to this important phase of their lessons. Through these tools, teachers will develop strategic and integrated understandings of effective groupwork monitoring strategies. As a result of this work, teachers and researchers will be able to better connect teachers’ monitoring choices to students’ peer-to-peer math talk.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

07/01/2021

This project seeks to develop a personalized, scalable PD approach that centers on and builds from algebra teachers’ practices and individual strengths. The project will focus its PD efforts on instructional actions that are tailored to teachers' existing practice, can be readily adopted, and are easily accessible.

07/01/2021

This project will provide a field-based science and mathematics teacher education program that supports teaching focused on students’ affective development through culturally responsive practices. The project's teacher education program takes place over a two-year period and models how culturally responsive and affective instruction can occur in the STEM classroom to engage students.

07/01/2021

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.