Supporting the Implementation of Scientific Modeling Instruction in High School Chemistry and Biology in Rural Schools

High school students in many rural school districts have limited access to advanced STEM coursework and advanced technologies, including high-speed Internet. Rural school districts face difficulties in recruiting and retaining STEM teachers. In many cases, rural STEM teachers need additional training and support. The project will identify these, and other barriers rural teachers face and create professional development for teachers.

Full Description: 

High school students in many rural school districts have limited access to advanced STEM coursework and advanced technologies, including high-speed Internet. Rural school districts face difficulties in recruiting and retaining STEM teachers. In many cases, rural STEM teachers need additional training and support. The project will identify these, and other barriers rural teachers face and create professional development for teachers. The training will be designed to increase their discipline specific knowledge and related skills in engaging students in using models to explore, analyze, assess, and improve their thinking about and knowledge of science. Participating teachers will receive 114 hours of formal professional development in the summer and sustained support from follow-up sessions and an innovative virtual mentoring throughout the academic year. The project will revise biology and chemistry curriculum and support 30-90 teachers annually in rural areas in implementing reform-oriented MI instruction benefiting approximately 25,000 rural students. The project will result in a network of leader teachers who can sustain project initiatives. Online STEM professional development courses and digital tools for rural teachers and teachers will be made widely disseminated. In addition, project resources and research findings will be disseminated via conference presentations and peer-reviewed research journals.

Project research is designed to generate knowledge about the development of rural science teachers' pedagogical content knowledge (PCK) and the supports needed as rural teachers implement an approach to teaching called Modeling Instruction (MI). PCK refers to knowledge of and how to teach discipline-specific science concepts. MI is a pedagogical approach where students are actively engaged in using conceptual models that are created and applied to concrete physical, biological, and chemical phenomena to promote their understanding of scientific/mathematical principles. Through longitudinal mixed-methods research, the project will add new knowledge about PCK and MI. The project will investigate the progression of teachers’ PCK associated with the high-level implementation of MI that engages students in science research practices. The research of discipline specific PCK will significantly inform the curriculum and design of preservice and in-service science teacher education programs. The project will also research how various aspects of mentoring (e.g., feedback, interactions, discourse, and the modes and quantity of mentoring activities) support teachers in the effective use of PCK in the classroom. Qualitative research tools will include analysis of videos of teacher implementation of lessons, interviews with teachers focusing on the lessons, focus groups and semi-structured interviews on mentoring experiences, and analysis of teacher mentor-teacher mentee sessions and activity. The Science Instruction Practices Survey will collect quantitative data that will be used to understand each teacher’s implementation of MI, looking at the science practices that teachers in the classroom such as investigation, data collection and analysis, explanation, modeling, and science communication.

Project Materials

There is no content in this group.