Projects

07/01/2020

This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.

07/15/2020

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

08/01/2020

The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers. 

08/01/2020

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

09/01/2020

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

05/01/2021

This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans. This project investigates: 1) how mathematics teachers learn to teach the mathematics content through investigation of relevant social issues, 2) how teachers negotiate classroom dilemmas related to this approach, and 3) how students feel about mathematics and their ability to enact change toward an equitable society.

05/15/2021

This project represents a new approach to quality assessment of K-12 science and engineering learning experiences. By updating and expanding the Dimensions of Success (DoS) observation tool initially established for informal science learning settings to middle school science and engineering classrooms (DoS-MSSE), the project will create and implement a sustainable and scalable system of support for teachers who are learning how to implement the Next Generation Science Standards (NGSS) Framework for K-12 effectively and equitably.

07/01/2021

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

07/01/2021

This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

07/01/2021

This project will engage middle school students in place-based coastal erosion investigations that interweave Indigenous knowledge and Western STEM perspectives. Indigenous perspectives will emphasize learning from place and community; Western STEM perspectives will focus on systems and computational thinking. The project will position middle school students in a culturally congruent epistemological stance (student-as-anthropologist), allowing them to build Earth science learning from both Indigenous knowledge as well as Western-style inquiry and promote their ability to apply integrated Earth science, mathematics, and computational thinking skills in the context of coastal erosion.

07/01/2021

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

07/01/2021

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

07/01/2021

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

07/01/2021

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

08/01/2021

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

08/15/2021

Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

09/01/2021

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

09/01/2021

This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.