Projects

09/01/2021

This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies.

09/01/2021

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

09/01/2021

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes.

09/01/2021

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/01/2021

This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.

09/01/2021

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

09/01/2021

The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers.

09/01/2021

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/01/2021

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

07/01/2022

This project aims to create and study an Equitable and Interactive Mathematical Modeling (EIM2) program that positions students as decision makers in their own learning. Despite the value of connecting students’ life experiences with their mathematical learning, the practical implementation of this strategy has proven challenging in a classroom setting. EIM2 addresses this issue by supporting students to engage in equitable mathematical modeling, a process of using mathematics to analyze and quantify scenarios through a lens of equity.

07/15/2022

The project will design, develop, and test a research-based professional development (PD) approach that will ensure that teachers, and ultimately their middle-school students, have the knowledge to act in a way that promotes zero net loss of biodiversity in their communities. Through their participation in the PD, teachers will be equipped to plan for and implement NGSS-aligned instruction, facilitate student identification and understanding of biodiversity and environmental justice issues in their local community, and foster student capacity to take action. Students will come to understand that biodiversity is a global issue that they can influence at the local level, and will become empowered, in both their knowledge and their agency, to be leaders in solving biodiversity problems in their communities.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

08/01/2022

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

08/01/2022

This project explores the effectiveness of two different versions of professional development (PD) designed to enhance middle school mathematics teachers’ understanding of fractions and proportions, and their teaching of these mathematical concepts to students. The PD uses an approach that engages teachers with web-based apps that allow them to test and experiment with their mathematical ideas. The apps, combined with guiding questions that challenge teachers’ thinking about fractions and proportions, serve both to promote critical thinking about the concepts and to further developing their understandings of the concepts. The researchers will use an innovative approach, topic modeling, to examine the effectiveness of each of version of the PD.

08/01/2022

Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.

08/01/2022

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

08/01/2022

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

08/01/2022

This study will investigate factors influencing teacher change after professional learning (PL) experiences and will examine the extent to which modest supports for science and engineering teaching in grades 3-5 sustain PL outcomes over the long term, such as increases in instructional time devoted to science, teacher self-efficacy in science, and teacher use of reform-oriented instructional strategies aligned with the Next Generation Science Standards.

08/01/2022

This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.