The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.
Projects
To act on energy issues, students need a strong understanding of energy flow and energy efficiency. However, students rarely have opportunities to learn about how buildings, such as their own school, drive about 40% of energy use and global carbon emissions. Addressing this gap in science education, this project will design, pilot, and evaluate a 6-week middle school curriculum called Build it Green! (BIG!). Blending classroom experiences and interactive digital learning tools, the researchers will work with rural middle schools in Missouri to implement and test how following the story of energy flow in and out of a hypothetical school building enhances students’ understanding of energy systems in the science of green buildings.
Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.
This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.
This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.
This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.
This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.
The purpose of this project is to develop and conduct initial studies of a multi-grade program targeting critical early math concepts. The project is designed to address equitable access to mathematics and STEM learning for all students, including those with or at-risk for learning disabilities and underrepresented groups.
This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.
This study will build upon the team's prior research from early in the pandemic. Researchers will continue to collect data from families and aims to understand parents’ perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the Spring and Summer of 2021 and into the 2021-22 school year.
The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.
This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.
This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.
The project will develop and study a professional development program focused on fraction for interventionists who work with grades four and five students with mathematics disabilities and difficulties.
This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.
This project will study the aspects of genetics instruction that affect students' beliefs in neurogenetic essentialism, which is implicated in lowering girls' sense of STEM abilities, feeling of belonging in STEM classes, and interest in pursuing further education in STEM fields. The goal of the project is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate but does not have these detrimental side effects.
The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.
Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.
This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.
This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.
This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms.
The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.
This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.
The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.
This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.