Projects

08/01/2023

This project builds capacity for middle school teachers to enact and adapt integrated STEM curriculum units with their students. The units will focus on biomimicryexamining structures and functions found in nature and applying these to solve human problems, which combines science, engineering, and technology. The project enables teachers to design activities that are personally authentic to their students by supporting teachers to examine their students' assets, needs, and interests and center these during unit design.

08/01/2023

This project aims to create and test an innovative educational approach for bringing STEM learning experiences to underserved youth. It will co-create and study an outdoor robotic-augmented playground called the “Smart Playground” and a corresponding series of classroom lessons. The Smart Playground will be co-designed with Latinx families and educators to engage children in developing computational thinking skills and learning about robotics in a physical environment using a culturally sustaining approach. Research and evaluation will examine whether exposure to the Smart Playground and corresponding classroom activities have an impact on the development of computational thinking in young children.

08/01/2023

Geometry instruction offers unique opportunities for students to apply design thinking to authentic problems. This project supports teachers in designing and implementing lessons using a human-centered design (HCD) approach. Geometry teachers will participate in lesson study for two years to plan problem-based geometry lessons and to observe student thinking during those lessons. The project investigates how teachers learn about and apply a human-centered framework for teaching geometry.

09/01/2023

This project seeks to better understand how teachers' capacity and willingness to customize instructional approaches to meet standards and the needs of diverse student populations develops through initial practice and successive enactments of curriculum materials. This work will address current gaps in the literature and contribute to an overall understanding of how teachers develop the capacity to use curricula in ways that advance the goal of equitable science instruction.

09/01/2023

This project will build an interactive and integrated curricular and professional development technological system: the Building Blocks Toolset (BBToolset). The BBToolset is designed to benefit all early childhood educators and their students. Young children will learn from engaging, effective digital educational games and face-to-face activities. Teachers will receive just-in-time professional development related to their students' development and guidance on curricular choices and culturally sensitive pedagogical strategies.

09/15/2023

This project is an innovative exploratory research study focused on developing a high school environmental engineering curriculum that addresses the challenges posed by climate change. The curriculum follows a model-validate-iterate design paradigm, where students model dynamic real-world systems, validate their models using data, and create multiple iterations to explore changes in the system over time. The project aims to cultivate a new generation of environmental engineers who possess the necessary skills to analyze complex systems, collaborate with diverse communities, and develop creative solutions.

09/15/2023

This research study examines the potential of integrating student-driven descriptive investigations of complex multivariate civic datasets into middle school social studies classrooms. It uses a collaborative co-design process to develop data-rich experiences for the social studies classroom crafted to 1) deepen students' data literacy, 2) develop students' sense of efficacy in working with civic data sets, and 3) create learning experiences that connect data to local problems that have meaning for students and their communities.

09/15/2023

This RAPID project responds to the Buffalo blizzard of 2022 (Buffalo, NY) by developing, with and for the community, a science education curriculum framework focused on disaster justice and resilience. This project will document the science education human and social impact of the blizzard by capturing the experiences, reflections, and needs of science teachers, Black and Brown community leaders, and families who were directly affected.

10/01/2023

Understanding of algebra concepts is necessary for students to gain access to STEM pathways. However, recent efforts in education have failed to improve algebra outcomes for many students, especially those with learning disabilities and persistent difficulties in mathematics. The primary goal of this project is to develop a supplemental intervention that intentionally develops students' concept of variable as they learn to (a) interpret and evaluate expressions, (b) represent real-life mathematical word problems using algebraic notation, and (c) solve linear equations. A focus on clarifying common misconceptions about variables will be interwoven throughout the program.

10/01/2023

The purpose of this project is to develop a home mathematics environment (HME) intervention for preschool-aged children with developmental delays (DD). The project includes caregivers of children with DD as collaborators in the iterative design process to develop feasible and sustainable HME intervention activities.

06/01/2024

Semiconductors are essential components of electronic devices, enabling advances in important applications and systems such as communication, healthcare, and national security. In order to sustain the U.S.'s global competitiveness in the semiconductor industry, there is a growing demand for a skilled semiconductor workforce. High schoolers are among the most frequent users of electronic devices. However, many do not know how these devices are designed and manufactured. To address the knowledge gaps and workforce needs equitably, this project will develop a semiconductor curriculum with high-school-aged students from diverse backgrounds, and with partners in higher education, K-12, and industries, enhanced with artificial intelligence (AI) and other innovative technologies.

08/01/2024

Environmental issues like wildfires can serve as effective science learning contexts to promote scientific literacy and citizenship. This project will partner with teachers, teacher educators, and disciplinary experts in data science, fire ecology, public health, and environmental communication to co-design a data-driven, justice-oriented, and issue-based unit on wildfires. In the unit, student will engage in various data practices to gain insights into the issue of wildfires and how it affects their lives and communities. The project seeks to theorize how learners can leverage disciplinary knowledge and practices in environmental and data science as a foundation for making data-informed actions towards a more just and sustainable society.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Young children thrive when strong relationships exist between their home and school environments. Early home and school experiences support the development of mathematical skills. Often, schools and teachers struggle to establish these strong relationships; therefore, Math Partners will work with teachers and teaching assistants in classroom design teams to help teachers establish healthy, positive relationships with families that center families’ knowledge and experiences in the context of mathematics.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

09/01/2024

This project will support a conference series, including an in-person gathering and virtual follow-up meetings, that will bring together teachers, researchers, education leaders, and instructional material designers to build a shared understanding of how to integrate the use of high-quality instructional materials with the benefits of localizing these materials to better address students’ contexts and backgrounds. By fostering dialogue, sharing models, and setting priorities for future research and design, the project seeks to build knowledge about inclusive, effective, and culturally responsive approaches to science instruction that will advance equitable science education in K–12 classrooms.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

11/01/2024

To successfully understand and address complex and important questions in the field of environmental science, many kinds of communities’ knowledge about their local environment need to be engaged. This one-year partnership development project involves a collaboration to design an approach that would yield opportunities for K-12 students to learn about environmental science in ways that honor both traditional STEM knowledge and Native ways of knowing among the Pomo community in California.