Students

Mathematical Learning via Architectural Design and Modeling Using E-Rebuild

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The project will examine how to collect data about students' learning from data generated as they play the game, how students learn mathematics using the simulation, and how the simulation can be included in middle school mathematics learning.

Lead Organization(s): 
Award Number: 
1720533
Funding Period: 
Tue, 08/01/2017 to Sat, 07/31/2021
Full Description: 

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. There is a need to connect mathematics to real world contexts and problems. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The learning platform will be flexible so teachers can customize tasks for their students. The project will examine how to collect data about students' learning from data generated as they play the game. The project will explore how students learn mathematics using the simulation and how the simulation can be included in middle school mathematics learning.

The project includes two major research questions. First, how will the design of a scalable game-based, design-centered learning platform promote coordination and application of math representation for problem solving? Second, how and under what implementation circumstances will using a scalable architectural game-based learning platform improve students multi-stranded mathematical proficiency (i.e., understanding, problem solving and positive disposition)? A key feature of the project is stealth-assessment or data collected and logged as students use the architectural simulation activities that can be used to understand their mathematics learning. The project uses a design-based research approach to gather data from students and teachers that will inform the design of the learning environment. The qualitative and quantitative data will also be used to understand what students are learning as they play the game and how teachers are interacting with their students. The project will include a mixed methods study to compare classrooms using the architectural activities to classrooms that are using typical activities.

Fostering Collaborative Computer Science Learning with Intelligent Virtual Companions for Upper Elementary Students (Collaborative Research: Wiebe)

The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices.

Partner Organization(s): 
Award Number: 
1721000
Funding Period: 
Tue, 08/15/2017 to Sat, 07/31/2021
Full Description: 

There is growing recognition that children can, and should, learn computer science. One of the central tenets of computer science is that it is a collaborative discipline, yet children do not start out with an intrinsic ability to collaborate. The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will address three thrusts. First, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms. Second, the project will design, develop, and iteratively refine its intelligent virtual learning companions, which support dyads of students in a scaffolded computer science learning environment with an interactive online coding tool. Third, the project will generate research findings and evidence about how children collaborate in computer science learning, and how best to support their collaboration with intelligent virtual learning companions. There will be three families of deliverables: learning activities and professional development, an intelligent learning environment with virtual learning companions, and research evidence that furthers the state of scholarship and practice surrounding the collaborative learning of computer science. The project will situate itself in highly diverse elementary schools in two states, Durham County, North Carolina and Alachua County, Florida. This project is supported by the Discovery Research PreK-12 program, which funds research and development of STEM innovations and approaches.

The project addresses the research question, "How can we support upper elementary-school students in computer science learning and collaboration using intelligent virtual learning companions?" The initial dataset will provide a ground-truth measure of students' collaboration approaches to classroom computer science learning tasks through instrumenting computer labs in elementary schools for collecting dialogue and problem-solving activity. The project will collect triangulating qualitative data to better understand impactful classroom dynamics around dyadic learning of computer science. The technical innovation of the project is the way in which student dyads are supported: each pair of children within the elementary school classroom will interact with a dyad of state of-the-art intelligent virtual learning companions. These companions will enhance the classroom experience by adapting in real time to the students' patterns of collaboration and problem solving to provide tailored support specifically for that pair of students. The virtual learning companions will model crucial dimensions of healthy collaboration through their dialogue with one another, including self-explanation, question generation, attributing challenges to the task and not to deficits in each other, and establishing common ground through uptake of ideas. The project will compare outcomes of computer science learning as measured in two ways: individual pre-test to post-test, and quality of collaboratively produced solutions. The project team will measure collaborative practices through dialogue analysis for the target collaboration strategies, as well as interest and self-efficacy for computer science. The project will utilize a multilevel model design to study the effect of the virtual learning companions on student outcomes. Using speech, dialogue transcripts, code artifact analysis, and multimodal analysis of gesture and facial expression, the team will conduct sequential analyses that identify the virtual learning companion interactions that are particularly beneficial for students, and focus our development efforts on expanding and refining those interactions. They will also identify the affordances that students did not engage with and determine whether to eliminate or re-cast them. The analytics of collaborative process data will once again be augmented with qualitative classroom data from field notes, focus groups, and semi-structured interviews with students and teachers. The themes that emerge will guide subsequent refinement of the environment and learning activities.

BioGraph 2.0: Online Professional Development for High School Biology Teachers for Teaching and Learning About Complex Systems

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

Lead Organization(s): 
Award Number: 
1721003
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms. The online teacher professional development (PD) will be delivered through the edX open access platform.

This research project will include two cycles of design and development of the professional development experience. It will include mixed methods and a longitudinal examination of teacher and student learning fostered by professional development. The research for the first phase will be qualitative in nature and will result in a series of case studies that highlight different facets of the interactions that influence teachers' learning. Following this qualitative phase, through a field study that employs multivariate analysis of covariance and hierarchical linear models analytical techniques, the effectiveness of the design and development stages will be compared to an alternative professional development experience that is similar to the project's professional development but does not include collaborative design. The broad aim is to develop and test an open-access, online system of professional development (PD) that includes solutions for known challenges in teacher online PD. The project builds on a prior NSF-funded exploratory project. The project will employ a randomized control trial to assess the effectiveness of PD on improving teacher content knowledge and skills, changes in classroom practices and instruction, curriculum engagement by students and student achievement outcomes with an end goal to understand better what facilitates online PD and to create a low cost scalable and online version of the original NSF-funded BioGraph. This research will produce insights and guidelines that can immediately be incorporated into the emerging field of online professional development, and online education in general. The content goals are to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

Exploring the Potential of Tablets as Early Math Resources for Urban Kindergarteners in Schools and Homes

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.

Lead Organization(s): 
Award Number: 
1744202
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. An important question for schools as tablet devices become more accessible is how to effectively use them in primary grades, especially kindergarten. In addition, since the devices are portable, how children use the resources such as games for mathematics learning at home is also important to understand. This project is set in a high-needs school district with a large number of low-income children. The project provides an opportunity to learn about the potential role of tables and digital resources in early grades through the analysis of assessment data, user analytic data documenting how the resources were used, and survey data from teachers and families.

Most studies of digital learning resources have been small-scale or focused on engagement. This study offers the opportunity to investigate the relationship between the use of these resources and learning outcomes using a quasi-experimental design. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources and how the resources then relate to kindergartners mathematics learning. Assessments of students' learning will focus on number, geometry and measurement concepts. The learner analytic data from the tablets will document the use of the resources on the tablets. Surveys and demographic data will also be collected to document how the tablets were used. Results of the study should inform implementation of tablet use by schools with particular attention to how they are used across in-class and at-home settings.

Project Accelerate: University-High School AP Physics Partnerships

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Lead Organization(s): 
Award Number: 
1720914
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Project Accelerate brings AP Physics 1 and, eventually, AP Physics 2 to students attending schools that do not offer AP Physics. The project will enable 249 students (mostly under-served, i.e., economically disadvantaged, ethnic minorities and racial minorities) to enroll in AP Physics - the students would otherwise not have access. These students either prepare for the AP Physics 1 exam by completing a highly interactive, conceptually rich, rigorous online course, complete with virtual lab experiments, or participate in an accredited AP course that also includes weekly hands-on labs. In this project, the model will be tested and perfected with more students and expanded to AP Physics 2. Further, model replication will be tested at an additional site, beyond the two pilot sites. In the first pilot year in Massachusetts at Boston University, results indicated that students fully engaged in Project Accelerate are (1) at least as well prepared as peer groups in traditional classrooms to succeed on the AP Physics 1 exam and (2) more inclined to engage in additional STEM programs and to pursue STEM fields and programs than they were prior to participating. In the second year of the pilot study, Project Accelerate doubled in size and expanded in partnership with West Virginia University. From lessons learned in the pilot years, key changes are being made, which are expected to increase success. Project Accelerate provides a potential solution to a significant national problem of too few under-served young people having access to high quality physics education, often resulting in these students being ill prepared to enter STEM careers and programs in college. Project Accelerate is a scalable model to empower these students to achieve STEM success, replicable at sites across the country (not only in physics, but potentially across fourteen AP subjects). The project could potentially lead to the success of tens of thousands of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Project Accelerate blends the supportive structures of a student's home school, a private online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The goals of the project are: 1) have an additional 249 students, over three years, complete the College Board-accredited AP Physics 1 course or the AP Physics 1 Preparatory course; 2) add an additional replication site, with a total of three universities participating by the end of the project; 3) develop formal protocols so Project Accelerate can be replicated easily and with fidelity at sites across the nation; 4) develop formal protocols so the project can be self-sustaining at a reasonable cost (about $500 per student participant); 5) build an AP Physics 2 course, giving students who come through AP Physics 1 a second year of rigorous experience to help further prepare them for college and career success; 6) create additional rich interactive content, such as simulations and video-based experiments, to add to what is already in the AP Physics 1 prep course and to build the AP Physics 2 prep course - the key is to actively engage students with the material and include scaffolding to support the targeted population; 7) carry out qualitative and quantitative education research, identifying features of the program that work for the target population, as well as identifying areas for improvement. This project will support the growing body of research on the effectiveness of online and blended (combining online and in-person components) courses, and investigate the use of such courses with under-represented high school students.

Identifying Effective Instructional Practices that Foster the Development of Algebraic Thinking in Elementary School

This project seeks to identify teaching practices that can be linked to students' early algebra learning in grades three, four and five. The goal of the project is to use assessment data and videos of classroom teaching in order to create a tool that can be used to document effective instructional practices. This observation tool can then be used to support teacher professional development in early algebra and research about how teachers' actions can be linked to students' learning.

Lead Organization(s): 
Award Number: 
1721192
Funding Period: 
Thu, 06/01/2017 to Mon, 05/31/2021
Full Description: 

There is a critical need to better prepare all students for learning algebra. Part of this preparation involves developing a strong foundation for algebra in the elementary grades by building on students' informal intuitions about patterns, relationships and structure into more formalized ways of mathematical thinking. This project seeks to identify teaching practices that can be linked to students' early algebra learning in grades three, four and five. The goal of the project is to use assessment data and videos of classroom teaching in order to create a tool that can be used to document effective instructional practices. This observation tool can then be used to support teacher professional development in early algebra and research about how teachers' actions can be linked to students' learning. The project is unique in its work to link an early algebra curriculum with understanding of teachers' practices in implementing that curriculum and students' learning of mathematics.

The project aims to address two research questions. First, what profiles of instructional practice are associated with greater student performance in early algebra? Second, to what extent do these profiles of effective instructional practices vary by grade level? The primary product of the work is an early algebra observation protocol that will capture non-domain and non-grade level specific practices of effective teaching in combination with practices specific to early algebra. Videos of early algebra classrooms will be used to design the observation protocol, which in turn, will then be used along with student assessment data to identify profiles of instructional practices associated with students' learning. Multiple phases of testing and revision will be used to create the observation protocol. The observation protocol will also generate profiles of teacher practices that can be used to describe different models for effectively teaching early algebra. The project will also examine implications of their work for teacher preparation and professional development.

Integration of Engineering Design and Life Science: Investigating the influence of an Intervention on Student Interest and Motivation in STEM Fields

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields.

Lead Organization(s): 
Award Number: 
1721141
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. Specifically, the project will partner with middle school science teachers from two local school corporations, STEM university faculty members and undergraduate engineering students, and university-based outreach coordinators from a minorities engineering program, the office of future engineers, and women in engineering program. Through this combined effort, both school corporations that serve underserved, culturally diverse, and socioeconomically disadvantaged students in rural communities; will have broad-based support for engaging 36 teachers and 3000 students in integrated life science with engineering design.

The project will employ a mixed methods research design incorporating both qualitative and quantitative approaches for data collection and analyses. The research team will conduct quantitative analyses by using Hierarchical Linear Modeling to determine the extent to which integrating life science with engineering design and thinking impact student learning of life science concepts and interest in life and biosciences. Qualitative approaches, including discourse analysis, will be used to delve deeper into student learning of the targeted life science concepts. Through this research, the project will advance evidence-based understanding of learning, enhance the theoretical models of student life science learning, and merge and extend the successes of previous studies by using the faculty expertise in effective approaches in engineering integration in K-12 science classrooms. Specifically, concept assessments, interest surveys, recordings of classroom discourse, student artifacts (e.g., design reports), interviews, and classroom observations will be used as data sources. Outcomes from the project will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. The life STEM focused design tasks will be disseminated through an online peer-reviewed digital library available for use across the U.S. and beyond. Along with the design-based tasks on this website; results from the intervention model will be disseminated through electronic and print media to inform researchers, educators, administrators, and policy makers who play critical roles in enhancing student learning of and interest in STEM, about pathways to broadening participation in STEM.

Science and Engineering Education for Infrastructure Transformation

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1721054
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Concord Consortium in collaboration with Purdue University will research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. This project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration. The project will deliver two innovations: 1) The Smart High School is an engineering platform for designing Internet of Things systems for managing the resources, space, and processes of a school based on real-time analysis of data collected by various sensors deployed by students on campus; and 2) the Virtual Solar World is a computational modeling platform for students to design, deploy, and connect virtual solar power solutions for their homes, schools, and regions. Six standards-aligned curriculum units based on these technologies will be developed to guide student learning and support educational research. Approximately 2,000 students from rural, suburban, and urban high schools in Indiana, Massachusetts, New Hampshire, and Ohio will participate in this research. project products and findings through the Internet, conferences, publications, and partner networks.

The research is designed to identify technology-enhanced instructional strategies that can simultaneously foster the growth of skills and self-efficacy in scientific reasoning, design thinking, and computational thinking, all of which are needed to build the future infrastructure. The focus on infrastructure transformation is aligned with NSF's vision of smart and connected communities. Although this project will use the context of smart and green infrastructure to engage students to solve real-world problems, the skills of scientific reasoning, design thinking, and computational thinking that they will acquire through meeting the challenges of this project can be transferrable to other topics and fields. Using a design-based research approach, a rich set of formative and summative data will be collected from these students for probing into three research questions: 1) To what extent does the integrated learning model help students develop and connect scientific reasoning, design thinking, and computational thinking skills?; 2) To what extent is students' interest in cognate careers affected by the authenticity of engineering design challenges?; and 3) How do the variations in the solutions to overcome the cognitive and practical difficulties of real-world problems impact learning outcomes and career interest? The data sources include pre/post-tests, process data, self-reports, observations, surveys, interviews, and participant information.

Examining Relationships Between Flipped Instruction and Students' Learning of Mathematics

This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.

Lead Organization(s): 
Award Number: 
1721025
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Instead of presenting new material in class and then assigning problems to be completed outside of class, flipped instruction involves students watching videos or reading new material outside of class and then completing their "homework" in class. Teachers' implementation of flipped instruction has increased dramatically in recent years, with more than two-thirds of teachers now reporting flipping a lesson, if not an entire course. Although popular media and philanthropic organizations have given a great deal of attention and financial support to flipped instruction, little is known about how teachers implement it and what benefits and drawbacks flipped instruction has in contrast with non-flipped instruction. This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics. This design and development is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning. These findings can inform teacher educators in better aligning their instruction to instructional formats that correlate with increased student learning outcomes.

Using mixed-methods techniques, the study will look at the nature of the activities and interactions occurring in mathematics classrooms and assess their quality so that the researchers may distinguish high-quality from low-quality univocal discourse, high-quality from low-quality dialogic discourse, and high cognitive demand from low cognitive demand tasks. Working in 40 algebra classrooms -- 20 implementing some form of flipped instruction and 20 serving as a non-flipped basis for comparison -- the project will address the following research questions using a correlational design and multilevel modeling techniques: RQ1. What are salient factors entailed in flipped instruction in secondary algebra? RQ2. What associations, if any, exist among factors entailed in teachers' implementation of flipped algebra instruction and students' learning of algebra as measured on a state-mandated end-of-course assessment and on a concept-of-variable inventory?

Research on the Utility of Abstraction as a Guiding Principle for Learning about the Nature of Models in Science Education

This project will develop a short instructional sequence and new student learning assessments that are implemented in earth science classes. The findings will help the field to understand whether the process of abstracting from multiple phenomena during model construction supports students' understanding of scientific models in relation to earth science ideas and the cross-cutting concept of scale.

Partner Organization(s): 
Award Number: 
1720996
Funding Period: 
Mon, 05/15/2017 to Thu, 04/30/2020
Full Description: 

Contemporary science education reforms consider modeling as a means to understanding science ideas and as an essential scientific practice to be learned. Modeling is the practice of developing and refining representations (or "models") as analogs of scientific phenomena. Important to the practice of modeling is the idea that, as an analog, a model draws out (or "abstracts") some as opposed to all aspects of a phenomenon. However, a well-known problem in modeling instruction is that leaners have difficulty understanding this essential point. Learners often think of models as literal interpretations, or replicas, of what they represent. The investigators hypothesize that engaging students in a process of abstraction -- that is, drawing out common structures from multiple scientific phenomena -- during the creation (or "synthesis") of their own model will help students better understand the nature of scientific models. Importantly, this approach will help students discover that a scientific model is not simply a literal interpretation, or replica, of any single phenomenon. Sixteen teachers and their estimated 960 students from economically challenged communities in Georgia and Maine will participate in and benefit from the research study in the context of high school earth and environmental science classes. The project will develop a short instructional sequence and new student learning assessments that are implemented in earth science classes. The findings will help the field to understand whether the process of abstracting from multiple phenomena during model construction supports students' understanding of scientific models in relation to earth science ideas and the cross-cutting concept of scale. The project will provide professional development workshops to up to forty-six teachers over three years as means of recruiting research participants and to cultivate teacher leadership around the new approach to modeling. The developed products and the research findings will be shared with researchers, teacher educators, and teachers through science education journals and conferences.

This Exploratory Learning Strand research study builds upon prior work of investigators at University of Georgia and University of Maine by rigorously testing their hypothesis that that engaging students in the process of abstracting from multiple source phenomena during model synthesis supports more scientifically accurate understandings of the nature of models. The research has the potential to (1) generate new knowledge about the potential value of abstraction as a guiding principle of learning about models and modeling practice; (2) identify ways in which specific classroom conditions, including teacher talk and actions, enable or hinder student learning about abstraction in models and modeling practice; and (3) demonstrate how teachers translate the modeling approach to other science disciplines they teach. Teachers will be recruited through existing partnerships with schools and through professional development workshops offered to teachers nearby the two universities. To address the first two goals, the investigators will develop and test a two-part instructional sequence that addresses core ideas in earth science and the cross-cutting concept of scale. The first component of the instructional sequence is a typical model-based inquiry, and the second component requires that students abstract structures from multiple phenomena during the synthesis of their own models. Twelve teachers and their students will be randomly assigned to either the treatment or the control group. The treatment group will experience the two-part instructional sequence. The control group will initially not experience the second component, but will have an opportunity to do so at the conclusion of the study. Quantitative and qualitative analysis of classroom observations, interviews with teachers, student knowledge tests, student work, and teacher logs will be used to determine the effectiveness of abstracting during model synthesis and classroom conditions that enable or hinder students' learning when the approach is used. To address the third goal, investigators will document the experience of four teachers as they develop and implement a similar instructional sequence in other science disciplines, providing preliminary evidence on the broader utility of the synthesis-through-abstraction approach to modeling. A new research assessment for measuring students' understanding of the nature of models, core ideas of earth science, and the cross-cutting concept of scale may be broadly useful for future research on learning at the intersection of the three knowledge dimensions. Findings will be shared by traditional means, such as papers in peer-reviewed research and practitioner journals and conference presentations. Investigators will conduct professional development workshops for teachers in the third year to disseminate the products and findings of the research to practitioner audiences and to further cultivate participating teachers' leadership around this novel approach to modeling practice in science education.

Pages

Subscribe to Students