Students

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Project Email: 
Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Project Evaluator: 
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

Alternative video text
Alternative video text: 

Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Ballard)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Project Email: 
Partner Organization(s): 
Award Number: 
1908915
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Alternative video text
Alternative video text: 

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Henson)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Lead Organization(s): 
Award Number: 
1908670
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Ed+gineering: An Interdisciplinary Partnership Integrating Engineering into Elementary Teacher Preparation Programs

In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths.

Lead Organization(s): 
Award Number: 
1908743
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Engineering education, with its emphasis on developing creative solutions to relevant problems, is a promising approach to increasing elementary students' interest in scientific fields. Despite its potential, engineering education is often absent from elementary classes because many teachers feel underprepared to integrate it into their instruction. This project addresses this issue through an innovative approach to undergraduate elementary education programs. In this approach, called Ed+gineering, undergraduate elementary education majors team with undergraduate engineering majors to develop and teach engineering lessons to elementary students in out-of-school settings. In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths. The research team will study whether Ed+gineering is correlated with positive outcomes for the elementary education majors. They will also study whether and how the elementary education majors subsequently provide engineering instruction during their first year of licensed teaching. This project will advance knowledge by resulting in a model for teacher education that has the potential to improve future elementary teachers' confidence and ability to teach engineering. In turn, more elementary students may have opportunities to experience engineering as they discover how innovative applications of science can be used to solve problems in the world around them.

Researchers at Old Dominion University will study whether a teacher preparation model is associated with positive outcomes for pre-service teachers while they are undergraduates and in their first year as professional teachers. Undergraduate elementary education majors and undergraduate engineering majors will work in interdisciplinary teams, comprised of four to six people, in up to three mandatory collegiate courses in their respective disciplinary programs. Each semester, these interdisciplinary teams will develop and teach a culturally responsive, engineering-based lesson with accompanying student materials during a field trip or after-school program attended by underrepresented students in fourth, fifth, or sixth grade. Using a quasi-experimental design with treatment and matched comparison groups, researchers will identify whether the teacher preparation model is associated with increased knowledge of engineering, beliefs about engineering integration, self-efficacy for engineering integration, and intention to integrate engineering, as determined by existing validated instruments as well as by new instruments that will be adapted and validated by the research team. Additionally, the researchers will follow program participants using surveys, interviews, and classroom observations to determine whether and how they provide engineering instruction during their first year as licensed teachers. Constant comparative analyses of these data will indicate barriers and enablers to engineering instruction among beginning teachers who participated in the Ed+gineering program. This project will result in an empirically-based model of teacher preparation, a predictive statistical model of engineering integration, field-tested engineering lesson plans, and validated instruments that will be disseminated widely to stakeholders.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Project Evaluator: 
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Alternative video text
Alternative video text: 

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Project Email: 
Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Project Evaluator: 
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.

Alternative video text
Alternative video text: 

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists (Collaborative Research: Lewis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Project Email: 
Lead Organization(s): 
Award Number: 
1906588
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Alternative video text
Alternative video text: 

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Davis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Project Email: 
Lead Organization(s): 
Award Number: 
1906565
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Alternative video text
Alternative video text: 

Pages

Subscribe to Students