Achievement/Growth

CAREER: Engaging Elementary Students in Data Analysis Through Study of Physical Activities

This project is investigating the learning that can take place when elementary school students are directly involved in the collection, sense-making, and analysis of real, personally-meaningful data sets. The hypotheses of this work are that by organizing elementary statistics instruction around the study of physical activities, students will have greater personal engagement in data analysis processes and that students will also develop more robust understandings of statistical ideas.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1054280
Funding Period: 
Fri, 07/01/2011 to Sat, 06/30/2018
Full Description: 

This CAREER awardee at Utah State University is investigating the learning that can take place when elementary school students are directly involved in the collection, sense-making, and analysis of real, personally-meaningful data sets. The project responds to increasing attention to data collection and analysis in elementary grades and aims to make important contributions to the knowledge base on effective approaches to these topics. The hypotheses of this work are that by organizing elementary statistics instruction around the study of physical activities, students will have greater personal engagement in data analysis processes and that students will also develop more robust understandings of statistical ideas. Students and teachers from fifth grade classrooms from several elementary schools from northern Utah, are participating in the project. This work is co-funded by the EPSCoR program.

Statistics topics include measures of center and variation. Students use pedometers, heart rate monitors, other probeware, and the TinkerPlots software. The research team investigates the influence of personal ownership and relationships to data on students' understanding of learning of elementary statistics concepts and their ability to analyze data. The research involves multi-year clinical interviews and video-recorded classroom design experiments.

Research results are expected to be published in appropriate journals and are expected to be presented at professional meetings. Lesson plans and student instructional materials related to physical activity, measures of center, and data distributions are made available for use in partner elementary schools.

Enhancing Games with Assessment and Metacognitive Emphases (EGAME)

This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

Lead Organization(s): 
Award Number: 
1119290
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This development and research project from Vanderbilt University, Facet Innovations, and Filament Games, designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings and refines computer assisted testing and Hidden Markov Modeling to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

The project uses a randomized experimental 2 x 1 design comparing a single control condition to a single experimental condition with multiple iterations to test the impact of the game on the learning of Newtonian physics. Using designed based research with teachers and students, the researchers are iteratively developing and testing the interactions and knowledge acquisition of students through interviews, pre and post tests and stealth assessment. Student learner action logs are recorded during game-play along with randomized student interviews. Students' explanations and game-play data are collected and analyzed for changes in domain understanding using pre-post tests assessment.

The project will afford the validation of EGAME as an enabler of new knowledge in the fields of cognition, conceptual change, computer adaptive testing and Hidden Markov Modeling as 90 to 300 middle school students learn Newtonian mechanics, and other science content in game-based learning and design. The design of this digital game platform encompasses a very flexible environment that will be accessible to a diverse group of audiences, and have a transformational affect that will advance theory, design and practice in game-based learning environments.

Development of a Cognition-Guided, Formative-Assessment-Intensive, Individualized Computer-Based Dynamic Geometry Learning System for Grades 3-8

This project is focused on creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1119034
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Project Evaluator: 
Jeff Shih
Full Description: 

Developers and researchers at Ohio State University and KCP Technologies are creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students that can be used by them independently (online or offline) or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction (iDGi) and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards (CCSS). iDGi courseware fully integrates research-based Learning Progressions (LPs) for guiding students' reasoning; formative-assessment linked to LPs; instructional sequencing that interactively adapts to students' locations in LPs; built-in student monitoring, feedback, and guidance; and research-based principles of educational media into the modules. The software platform for iDGi development is an extended version of the dynamic geometry computer environment, The Geometer's Sketchpad.

The development process follows recommendations in Douglas Clements' Curriculum Research Framework and includes sequences of development, trials with students, data collection, and revision. The research and evaluation are based on random assignment of approximately 350 students to treatment and control groups. Achievement data are collected using developer-constructed instruments with items that reflect the mathematics topics in the CCSS. Researchers explore the variability at the student, teacher, and school levels using the appropriate level of hierarchical linear models.

Commercial publishers have expressed strong interest in publishing online and offline computer versions of iDGi, an iPad version of iDGi, an online management system for iDGi, and support materials for users and teachers.

Supporting Scientific Practices in Elementary and Middle School Classrooms

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1020316
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Full Description: 

Research on student learning has developed separate progressions for scientific argumentation, explanation and scientific modeling. Engaging Learners in Scientific Practices develops a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through improvements in students' performance and understanding of scientific practice as measured by their attention to generality of explanation, attention to clarity of communication and audience understanding, attention to evidentiary support, and attention to mechanistic versus descriptive accounts. The project is led by researchers at Northwestern University, the University of Texas, Wright State University, Michigan State University, and the BEAR assessment group. Two cohorts of 180 students each are followed for two years from 4th to 5th grade in Illinois and two cohorts of 180 students each are followed for two years from 5th to 6th grade in Michigan The elementary school students will work with FOSS curriculum units modified to embed supports for scientific practices. Two cohorts of 500 middle school students are followed for three years from 6th to 8th grade as they work with coordinated IQWST units over three years. The outcome measures include analyses of classroom discourse, pre- and pos-test assessments of student learning, and reflective interviews grounded in students' own experiences with practices in the classroom to assess their growth across the dimensions. The BEAR team is responsible for validation and calibration of the frameworks and instruments, and design of the scheme for analysis of the data. Horizon Research performs the formative and summative evaluation. The project will produce an empirically-tested learning progression for scientific practices for grades 4-8 along with tested curriculum materials and validated assessment items that support and measure students' ability in the scientific practices of explanation, argumentation and modeling. In the process of development, an understanding is gained about how to design and test this learning progression. The framework is articulated on a website for use by other researchers and developers. The project also builds capacity by educating several graduate students.


Project Videos

2019 STEM for All Video Showcase

Title: Science Storylines

Presenter(s): Brian Reiser, Kelsey Edwards, Barbara Hug, Tara McGill, Jamie Noll, Michael Novak, Bill Penuel, Trey Smith, & Aliza Zivic


Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

INK-12: Teaching and Learning Using Interactive Ink Inscriptions in K-12 (Collaborative Research: Koile)

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers and inscriptions in 4th and 5th grade math and science, as well as models for teacher education and use.
Award Number: 
1020152
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider, Education Design Inc.
Full Description: 

The research project continues a collaboration between MIT's Center for Educational Computing Initiatives and TERC focusing on the enhancement of K-12 STEM math and science education by means of technology that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The project builds on the PIs' prior work, which demonstrated that both teachers and students benefit from such technology because they can easily draw and write on a tablet screens, thus using representations not possible with only a typical keyboard and mouse; and they can easily send such ink inscriptions to one another via wireless connectivity. This communication provides teachers the opportunity to view all the students' work and make decisions about which to share anonymously on a public classroom screen or on every student's screen in order to support discussion in a "conversation-based" classroom. Artificial intelligence methods are used to analyze ink inscriptions in order to facilitate selection and discussion of student work.

The project is a series of design experiments beginning with the software that emerged from earlier exploratory work. The PIs conduct two cycles of experiments to examine how tablets affect students learning in 4th and 5th grade mathematics and science. The project research questions and methods focus on systematic monitoring of teachers' and students' responses to the innovation in order to inform the development process. The PIs collect data on teachers' and students' use of the technology and on student learning outcomes and use those data as empirical evidence about the promise of the technology for improving STEM education in K-12 schools. An external evaluator uses parallel data collection, conducting many of the same research activities as the core team and independently providing analysis to be correlated with other data. His involvement is continuous and provides formative evaluation reports to the project through conferences, site visits, and conference calls.

The primary products are substantiated research findings on the use of tablet computers, inscriptions, and networks in 4th and 5 grade classrooms. In addition the PIs develop models for teacher education and use, and demonstrate the utility of artificial intelligence techniques in facilitating use of the technology. With the addition of Malden Public Schools to the list of participating districts, which includes Cambridge Public Schools and Waltham Public Schools from earlier work, the project expands the field test sites to up 20 schools' classrooms.

CAREER: Supporting Middle School Students' Construction of Evidence-Based Arguments

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0953046
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Project Evaluator: 
David Williams
Full Description: 

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. The question chosen for study by a new researcher at Utah State University is: How can argumentation ability be enhanced among middle school students? This study involves 325 middle school students in 12 class sections from 3 school districts in Utah and Idaho. First, students in middle school science classrooms will be introduced to problem-based learning (PBL) units that allow them to investigate ill-structured science problems. These activities provide students with something about which to argue: something that they have explored personally and with which they have grappled. Next, they will construct arguments using a powerful computer technology, the Connection Log, developed by the PI. The Connection Log provides a scaffold for building arguments, allowing each student to write about his/her reasoning and compare it to arguments built by peers. The study investigates how the Connection Log improves the quality of students' arguments. It also explores whether students are able to transfer what they have learned to new situations that call for argumentation.

This study is set in 6th and 7th grade science classrooms with students of diverse SES, ethnicity, and achievement levels. The Connection Log software supports middle school students with written prompts on a computer screen that take students through the construction of an argument. The system allows students to share their arguments with other members of their PBL group. The first generation version of the Connection Log asks students to:

1. define the problem, or state the problem in their own words

2. determine needed information, or decide on evidence they need to find to solve the problem

3. find and organize needed information

4. develop a claim, or make an assertion stating a possible problem solution

5. link evidence to claim, linking specific, relevant data to assertions

The model will be optimized through a process of design-based research. The study uses a mixed methods research design employing argument evaluation tests, video, interviews, database information, debate ratings, and a mental models measure, to evaluate student progress.

This study is important because research has shown that students do not automatically come to school prepared to create evidence-based arguments. Middle school students face three major challenges in argumentation: adequately representing the central problem of the unit; determining and obtaining the most relevant evidence; and synthesizing gathered information to construct a sound argument. Argumentation ability is crucial to STEM performance and to access to STEM careers. Without the ability to formulate arguments based upon evidence, middle school students are likely to be left out of the STEM pipeline, avoid STEM careers, and have less ability to critically evaluate and understand scientific findings as citizens. By testing and refining the Connection Log, the project has the potential for scaling up for use in science classrooms (and beyond) throughout the United States.

Pages

Subscribe to Achievement/Growth