Qualitative

A Study of the Struggling Learner's Knowledge and Development for Number and Operation

This project targets first- and second-grade children who struggle to develop a deeper understanding of the mathematical strand of number and operation. The research team will (a) identify the various specific cognitive obstacles of first- and second-grade students who are struggling in number and operation, and (b) explore how instructional tasks designed to address specific cognitive obstacles affect the learning trajectory of struggling learners in number and operation.

Lead Organization(s): 
Award Number: 
0918060
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Dr. Jeff Barrett

Supports for Learning to Manage Classroom Discussions: Exploring the Role of Practical Rationality and Mathematical Knowledge for Teaching

This project focuses on practicing and preservice secondary mathematics teachers and mathematics teacher educators. The project is researching, designing, and developing materials for preservice secondary mathematics teachers that enable them to acquire the mathematical knowledge and situated rationality central to teaching, in particular as it regards the leading of mathematical discussions in classrooms.

Award Number: 
0918425
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2018
Project Evaluator: 
Miriam Gamoran Sherin
Full Description: 

Researchers at the Universities of Michigan and Maryland are developing materials to survey the rationality behind secondary mathematics teaching practice and to support the development by secondary mathematics preservice teachers of specialized knowledge and skills for teaching. The project focuses on the leading of classroom discussions for the learning of algebra and geometry.

Using animations of instructional scenarios, the project is developing online, multimedia questionnaires and using them to assess practicing teachers' mathematical knowledge for teaching and their evaluations of teacher decision making. Reports and forum entries from the questionnaires are integrated into a learning environment for prospective teachers and their instructors built around these animated scenarios. This environment allows pre-service teachers to navigate, annotate, and communicate about the scenarios; and it allows their instructors to plan using those scenarios and share experiences with their counterparts.

The research on teachers' rationality uses an experimental design with embedded one-way ANOVA, while the development of the learning environment uses a process of iterative design, implementation, and evaluation. The project evaluation by researchers at Northwestern University uses qualitative methods to examine the content provided in the environment as well as the usefulness perceived by teacher educators of a state network and their students.

Developing Algebra-ready Students for Middle School: Exploring the Impact of Early Algebra

This project is developing and testing a curricular learning progression of early algebra objectives and activities for students in grades 3 - 5. The goal of the work is to provide teachers with curricular guidance and instructional resources that are useful in preparing students for success in study of algebra at the middle grade level. The project is also developing and validating assessment tools for evaluating student progress toward essential pre-algebra mathematical understandings.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1207945
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

 

Data Games—Tools and Materials for Learning Data Modeling (Collaborative Research: Konold)

This project is developing software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.

Award Number: 
0918653
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jim Hammerman
Full Description: 

Students playing computer games generate large quantities of rich, interesting, highly variable data that mostly evaporates into the ether when the game ends. What if in a classroom setting, data from games students played remained accessible to them for analysis? In software and curriculum materials being developed by the Data Games project at UMass Amherst and KCP Technologies, data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.

 

The video games are embedded in TinkerPlots and Fathom, two data analysis learning environments widely used in grades 5–8 and 8–14 respectively. The game data appear in graphs in real time, allowing several cycles of strategy improvement in a short time. The games are designed so that these cycles im- prove understanding of specific data modeling and/or mathematics concepts. Lessons will be embedded in LessonLink from Key Curriculum Press to facilitate their integration into standard curricula. The three- year project expands research in students’ understanding of data modeling and their ability to learn mathematical content embedded in data-rich contexts.

An Architecture of Intensification: Building a Comprehensive Program for Struggling Students in Double-Period Algebra Classes

This project is carrying out a research and development initiative to increase the success rates of our most at-risk high school students—ninth-grade students enrolled in algebra classes but significantly underprepared for high school mathematics. It will also result in new understandings about effective approaches for teaching mathematics to struggling students and about effective ways for implementing these approaches at scale, particularly in urban school districts.

Award Number: 
0918434
Funding Period: 
Tue, 09/01/2009 to Thu, 03/01/2012
Project Evaluator: 
Inverness Research Inc.
Full Description: 

Intensified Algebra I, a comprehensive program used in an extended-time algebra class, helps students who are one to two years behind in mathematics become successful in algebra. It is a research and development initiative of the Charles A. Dana Center at The University of Texas at Austin, the Learning Sciences Research Institute at the University of Illinois at Chicago, and Agile Mind, that transforms the teaching of algebra to students who struggle in mathematics. Central to the program is the idea that struggling students need a powerful combination of a challenging curriculum, cohesive, targeted supports, and additional well-structured classroom time. Intensified Algebra I seeks to addresses the need for a robust Algebra I curriculum with embedded, efficient review and repair of foundational mathematical skills and concepts. It aims to address multiple dimensions of learning mathematics, including social, affective, linguistic, and cognitive. Intensified Algebra I uses an asset-based approach that builds on students’ strengths and helps students to develop academic skills and identities by engaging them in the learning experience. The program is designed to help struggling students succeed in catching up to their peers, equipping them to be successful in Algebra I and their future mathematics and science courses.

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
0918560
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

Science and Mathematics Integration for Literacy Enhancement (Project SMILE)

The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918505
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Project Evaluator: 
Dr. Eleanor Hasse

Persistent, Enthusiastic, Relentless: Study of Induction Science Teachers (PERSIST)

This project examines the effect of four different types of induction programs (district-based, e-mentoring, university-based, intern programs) on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

Award Number: 
1247096
Funding Period: 
Sat, 08/01/2009 to Wed, 07/31/2013
Full Description: 

This project examines the effect of four different types of induction programs on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

The four types of induction programs are described as follows.

1. General induction programs offered by school districts/regional centers,

2. Science-specific e-mentoring programs offered by higher education or science organizations,

3. Science-specific programs offered by higher education institutions, and

4. Intern programs that allow teachers to earn their teaching credential while they complete their first year of teaching.

Dr. Luft's research concentrates on providing the details that give insights into why newly qualified science teachers are leaving or persisting in the profession and how induction programs affect their beliefs and practices. The research questions for this study are:

1. Do induction programs make a difference in the retention of secondary science teachers during their fourth and fifth year?

2. What characterizations can be made about teachers who persist, their performance, and the assistance they receive?

3. How do beginning science teachers develop over their first five years? How do induction programs contribute to this development?

Data collection includes 8 interviews and 2 classroom observations of each teacher. The CETP-COP and Oregon Teacher Observation Protocol are used for classroom observations. Quantitative data analysis utilizes ANOVAs and HLM, to be followed by a qualitative analysis exploring the findings.

The research team is based at Arizona State University and includes Dr. Luft, Dr. Marilyn Thompson, five graduate students and one undergraduate student. The products will include papers submitted to professional journals, postings to the Arizona Science Coordinators Association listserv, and direct dissemination to school administrators and local meetings.

The impacts will be increased understanding of induction programs, what they achieve and what characteristics are effective. This will help policy makers and administrators modify the programs for increased effectiveness. Given the high rate of teachers leaving the profession during the first five years and the popularity of induction programs, the primary impact would be increased retention of quality teachers.

Supporting Grade 5-8 Students in Writing Scientific Explanations

This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0836099
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

 This SGER grant proposes the development of a book and a research study to investigate the impact of that book and accompanying professional development on teachers’ beliefs and classroom practices to support grade 5-8 students in writing scientific explanations.  The project will expand the current body of research around teachers’ beliefs and professional development for scientific explanation and argumentation as well as provide a valuable resource that includes examples of student writing and video cases from diverse learners that can be used by science educators and teachers across the country.

 

Intellectual Merit

The recent National Research Council publication Taking Science to School: Learning and Teaching Science in Grades k-8 (Duschl, Schweingruber & Shouse, 2006) offers a new vision for proficiency in science, which includes a focus that students be able to “Generate and evaluate scientific evidence and explanation” (p.2).  Although this focus on evidence based scientific explanations is prevalent in the current research literature, there are few concrete examples of what this scientific inquiry practice looks like when it is successfully supported in classrooms. We propose to develop a teacher book and accompanying professional development facilitator materials that will help transform how science is being taught in this country.  The book will provide concrete examples in both student written work and video of the current theoretical ideas being advocated in the science education field. By providing this image, the knowledge in the field will be advanced by transforming a theoretical idea and illustrating what it looks like in actual classroom practice that can be used by teachers as well as in teacher preparation and professional development.  The examples will include a variety of different contexts in terms of different content areas, grades 5-8, and students with a variety of backgrounds including diverse students from urban schools.  Furthermore, we propose to research the impact of the book and accompanying professional development on teachers’ beliefs and classroom practice around scientific explanation.  The majority of recent work in the field of scientific explanation and argumentation has focused on curriculum materials, technology tools, and classroom practice. There is currently little research around teacher education and professional development to support teachers in incorporating scientific explanation and argumentation in their classrooms (Zohar, 2008). Consequently, the results from this study will be essential to inform the field about teachers’ beliefs around scientific explanation, how professional development can change those beliefs, and the subsequent impact on teachers’ classroom practices.

 

Broader Impacts

The use of the book by teachers, professional development leaders and teacher educators will have a significant impact on middle school students’ learning throughout the country.  Through the distribution and use of the book, teachers will have access to resources that will help them incorporate scientific explanations in their own classroom practice.  As our previous research has shown (McNeill & Krajcik, 2007; McNeill & Krajcik, 2008a; McNeill, Lizotte, Krajcik & Marx, 2006), using our framework and instructional strategies for scientific explanation can improve diverse students’ ability to write scientific explanations as well as learn key science concepts.  A large percentage of our research has been conducted with urban students including minority students and students from low income families who have not traditionally succeeded in science. Focusing on science as a discourse with distinct language forms and ways of knowing, such as analyzing data and communicating scientific explanations can help language-minority students learn to think and talk scientifically (Rosebery, et al., 1992).  This book will allow the strategies we have found to be successful with diverse students to reach a much larger audience allowing more middle school students to succeed in science. Providing teachers with strategies and examples of how those strategies have been successfully used in real classrooms will help them implement similar practices in their own classrooms and will help more students successfully write evidence based scientific explanations.  The research study around the impact of the book and accompanying professional development will reach twenty-five teachers and their students in the Boston Public School schools which serve primarily low-income (71% eligible to receive free or reduced lunch) inner city students from minority backgrounds.  The publication of the book with Pearson Allyn & Bacon will have the potential of reaching numerous more teachers and their students across the country.

Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

Award Number: 
0918610
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jackie DeLisi, Education Development Center, Inc. (EDC)

Pages

Subscribe to Qualitative