Qualitative

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Duncan)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100876
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Reducing Racially Biased Beliefs by Fostering a Complex Understanding of Human Genetics Research in High School Biology Students (Collaborative Research: Wedow)

The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs. The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2100959
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Genetic essentialism is the belief that people of the same race share genes that make them physically, cognitively, and behaviorally uniform, and thus different from other races. The project will refine a genetics education curriculum, called Humane Genome Literacy (HGL), in order to reduce belief in genetic essentialism. This research will provide curriculum writers and educators with knowledge about how to design a humane genetics education to maximize reductions in students’ genetic essentialist beliefs and minimize the threat of backfiring (unintentionally increasing belief in essentialism). The research findings will demonstrate how to support teachers who wish to reduce beliefs in genetic essentialism by teaching students about the complexity of human genetics research using the HGL learning materials.  Project research findings, learning materials, and professional development institutes will be made available to educators and researchers across the country who desire to teach genetics to reduce racial prejudice.

To prepare for the research, the project will revise and augment the project’s existing HGL curriculum and professional development institutes.  In year one, the project will develop new versions of the HGL interventions. Using these materials, the project will train teachers to implement new versions of the HGL interventions in their classrooms. Researchers will video and audio record a sample of teachers and students as they learn. These data will be analyzed qualitatively to: (1) examine how the conceptual change of genetic essentialism was promoted or impeded by interactions between teachers, students, and the materials; and (2) identify and corroborate general factors undergirding the backfiring effect.  Knowledge constructed through these studies will be used to revise the HGL interventions and PDIs.  In year three, using the revised versions of the HGL intervention, the project will conduct a cluster randomized trial (CRT). The CRT will compare the HGL interventions to a well-defined “business as usual” genetics curriculum, using a statistically powerful and geographically diverse sample (N = 135 teachers, N = 16,200 students, from 33 states). Using data from the CRT, the project will identify classrooms where the interventions reduced essentialism, had no effect on it, and where it backfired. Then, the project will use stimulated recall methods to interview the teachers and students in those classrooms to make sense of factors that contributed to these outcomes. The project will use this information to develop the final version of the HGL interventions and PDI materials. By the end of year four, the project will have trained an additional 90-100 teachers to use HGL interventions, reaching an additional 10,800-12,000 students, in at least 33 different states.

Accessible Computational Thinking in Elementary Science Classes within and across Culturally and Linguistically Diverse Contexts (Collaborative Research: Nelson)

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

Lead Organization(s): 
Award Number: 
2101039
Funding Period: 
Sun, 08/15/2021 to Wed, 07/31/2024
Full Description: 

Currently, students who are white, affluent, and identify as male tend to develop a greater interest in and pursuit of science and computing-related careers compared to their Black, Latinx, Native American, and female-identifying peers. Yet, science, computing, and computational thinking drive societal decision-making and problem-solving. The lack of cultural and racial diversity in science and computing-related careers can lead to societal systems and decision-making structures that fail to consider a wide range of perspectives and expertise. Teachers play a critical role in preparing students to develop these skills and succeed in a technological and scientific world. For this reason, it is crucial to investigate how teachers can help culturally and linguistically diverse students develop a greater understanding of and interest in science and computers. This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction. In doing so, the project aims to increase both the quantity and quality of computing experiences for all elementary students and support NSF’s commitment in broadening participation in the STEM workforce. The project will also produce resources, measures, and tools to support elementary teachers to do this kind of work, which will be shared with other STEM researchers and teacher educators.

The goal of this research project is to design and promote teaching practices that integrate computational thinking in the elementary science classroom in culturally relevant ways. This project will seek to empower practicing elementary teachers’ approaches to meaningfully and effectively integrate and adapt computational thinking into their regular science teaching practice so that all students can access the curriculum. It will also explore the impact of these approaches on student learning and self-efficacy. The scope of this project will include working with multiple highly distinct school settings in Maryland, Arizona, and Washington DC across three years, reaching approximately 60 elementary teachers and 1,200 students. To achieve the project objectives, the research team will leverage concurrent mixed methods approaches that include teacher and student interviews, reflections, observations, descriptive case study reports as well as regression and multilevel modeling. The project’s findings will inform the fields’ understanding of: (a) teachers’ conceptualization of computational thinking; (b) the barriers elementary teachers encounter when trying to integrate computational thinking with culturally relevant teaching practices; (c) the types of support that are effective in teacher professional development experiences  and throughout the school year; and (d) the development of a cohort of teachers that can maintain integration efforts in different districts.

Accessible Computational Thinking in Elementary Science Classes within and across Culturally and Linguistically Diverse Contexts (Collaborative Research: Ketelhut)

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

Partner Organization(s): 
Award Number: 
2101526
Funding Period: 
Sun, 08/15/2021 to Wed, 07/31/2024
Full Description: 

Currently, students who are white, affluent, and identify as male tend to develop a greater interest in and pursuit of science and computing-related careers compared to their Black, Latinx, Native American, and female-identifying peers. Yet, science, computing, and computational thinking drive societal decision-making and problem-solving. The lack of cultural and racial diversity in science and computing-related careers can lead to societal systems and decision-making structures that fail to consider a wide range of perspectives and expertise. Teachers play a critical role in preparing students to develop these skills and succeed in a technological and scientific world. For this reason, it is crucial to investigate how teachers can help culturally and linguistically diverse students develop a greater understanding of and interest in science and computers. This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction. In doing so, the project aims to increase both the quantity and quality of computing experiences for all elementary students and support NSF’s commitment in broadening participation in the STEM workforce. The project will also produce resources, measures, and tools to support elementary teachers to do this kind of work, which will be shared with other STEM researchers and teacher educators.

The goal of this research project is to design and promote teaching practices that integrate computational thinking in the elementary science classroom in culturally relevant ways. This project will seek to empower practicing elementary teachers’ approaches to meaningfully and effectively integrate and adapt computational thinking into their regular science teaching practice so that all students can access the curriculum. It will also explore the impact of these approaches on student learning and self-efficacy. The scope of this project will include working with multiple highly distinct school settings in Maryland, Arizona, and Washington DC across three years, reaching approximately 60 elementary teachers and 1,200 students. To achieve the project objectives, the research team will leverage concurrent mixed methods approaches that include teacher and student interviews, reflections, observations, descriptive case study reports as well as regression and multilevel modeling. The project’s findings will inform the fields’ understanding of: (a) teachers’ conceptualization of computational thinking; (b) the barriers elementary teachers encounter when trying to integrate computational thinking with culturally relevant teaching practices; (c) the types of support that are effective in teacher professional development experiences  and throughout the school year; and (d) the development of a cohort of teachers that can maintain integration efforts in different districts.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Linn)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Partner Organization(s): 
Award Number: 
2101669
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Riordan)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Lead Organization(s): 
Award Number: 
2101670
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Developing the Pedagogical Skills and Science Expertise of Teachers in Underserved Rural Settings

The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers.

Lead Organization(s): 
Award Number: 
2101383
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Rural science teachers are often isolated and have few opportunities for meaningful collaboration with fellow teachers, an important source of professional learning. The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers. The project will host summer workshops for high school biology and chemistry teachers from four rural Utah regions to learn about 3D science teaching. (3D science teaching incorporates core ideas science disciplines, science research practices, and concepts cutting across disciplines to help students meet performance expectations by engaging with authentic science phenomena.) In the workshops, participants will collaborate with the project team and teachers of the same subject from the same region of the state to co-design 3D science lessons that align with state and national education standards. Building on relationships developed during the workshops, the regional teacher teams will engage in a novel form of professional learning: technology-mediated lesson study. (Lesson study is an instructional inquiry model where teachers work face-to-face in small collaborative groups to craft, deliver, observe, and refine teaching practice.) This project will develop capacity for science teaching for 88 rural science teachers in four regions of the state, who will reach approximately 10,000 rural Utah students each year. Many of the students are members of the sovereign Ute, Paiute, Goshute, Navajo (Diné), and Shoshone Nations. The science lesson plans participants design will be made available to all Utah teachers, and shared with a national audience through a website that shares peer-reviewed science lesson plans. Project research and resources will be further disseminated through conference presentations and publications in peer-reviewed and practitioner journals.

The project will research how TMLS supports teachers in the process of translating professional learning into practice and investigate the impact of changing teachers’ social support network to include teachers of the same subject from other rural schools. The project will study the effects of co-design activities and TMLS cycles on teachers’ changing capacity, practice, and social support system using mixed-methods research. Changes in capacity and practice will be examined qualitatively through interviews, video observations of classroom teaching, and TMLS meetings. The effects of TMLS on teachers’ social support system will be analyzed quantitatively using social network analysis to identify individuals who act as information hubs for 3D science teaching. These teachers will be interviewed to better understand their social interactions. Using design-based implementation research, the project will iteratively improve the professional learning experience collaboratively with the science teacher leaders who participate in the project.

Learning about Viral Epidemics through Engagement with Different Types of Models

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models.

Award Number: 
2101083
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

The project will develop new curriculum and use it to research how high school students learn about viral epidemics while developing competencies for scientific modeling. The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes. COVID-19 caused devasting impacts, and marginalized groups including the Latinx community suffered disproportionately negative outcomes. The project will directly recruit Latinx students to ensure that design products are culturally responsive and account for Latinx learner needs. The project will create new pathways for engaging Latinx students in innovative, model-based curriculum about critically important issues. Project research and resources will be widely shared via publications, conference presentations, and professional development opportunities for teachers.

The project will research three aspects of student learning: a) conceptual understandings about viral epidemics, b) epistemic understandings associated with modeling, and c) model-informed reasoning about viral epidemics and potential solutions. The research will be conducted in three phases. Phase 1 will explore how students make sense of viral epidemics through different types of models. This research will be conducted with small groups of students as they work through learning activities and discourse opportunities associated with viral epidemic models. Phase 2 will research how opportunities to engage in modeling across different types of models should be supported and sequenced for learning about viral epidemics. These findings will make it possible to revise the learning performance which will be used to develop a curricular module for high school biology classes. Phase 3 will study the extent to which students learn about viral epidemics through engagement in modeling practices across different models. For this final phase, teachers will participate in professional development about viral epidemics and modeling and then implement the viral epidemic module in their biology classes. A pre- and post-test research design will be used to explore student conceptual understandings, model-informed reasoning, and epistemic understandings.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: Reiser)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101377
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: McNeill)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101384
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Pages

Subscribe to Qualitative