Biology

STEM Practice-Rich Investigations for NGSS Teaching (SPRINT)

This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.

Lead Organization(s): 
Award Number: 
1503153
Funding Period: 
Mon, 06/01/2015 to Wed, 05/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.


Project Videos

2019 STEM for All Video Showcase

Title: Immersed in Phenomena: Helping Teachers Transition to NGSS

Presenter(s): Julie Yu, Sara Heredia, & Jessica Parker


Scientific Data in Schools: Measuring the Efficacy of an Innovative Approach to Integrating Quantitative Reasoning in Secondary Science (Collaborative Research: Stuhlsatz)

Lead Organization(s): 
Award Number: 
1503005
Funding Period: 
Wed, 07/15/2015 to Fri, 05/31/2019
Project Evaluator: 
Kristin Bass
Full Description: 

The goal of this project is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. Data Nuggets are activity-based resources that address current needs in STEM education and were developed by science graduate students and science teachers at Michigan State University through prior support from the NSF GK-12 program and the BEACON Center for the Study of Evolution in Action. The goal of Data Nuggets is to engage students in the practices of science through an innovative approach that combines scientific content from authentic research with key concepts in quantitative reasoning. Partners from Michigan State University and BSCS will adapt the materials to address current science and mathematics standards, create a professional development program for teachers, and test the efficacy of the materials through a cluster-randomized trial in the classrooms of 30 teachers in Michigan, Colorado, and California.

The project will study whether short, targeted interventions of classroom activities embedded within a typical curriculum can impact student outcomes. Prior to the study teachers will participate in professional development. Classrooms of the teachers in the study will be randomly assigned to either a treatment or comparison condition. Student outcome measures will include understanding of quantitative reasoning in the context of science, understanding of the practices and processes of science, student engagement and motivation, and interest in science.

In order to adequately train the next generation of citizens and scientists, research is needed on how quantitative reasoning skills build upon each other throughout K-16 science education Students need to experience activities that emphasize how science is conducted, and apply their understandings of how scientists reason quantitatively. Establishing the efficacy of Data Nuggets could provide the field with information about supplementing existing curriculum with short interventions targeted at particular scientific practices. By facilitating student access to authentic science, Data Nuggets bridge the gap between scientists and the public. Scientists who create Data Nuggets practice their communication skills and share both the process of science and research findings with K-12 students (and perhaps their families), undergraduates, and teachers, improving the understanding of science in society.

Learning about Ecosystems Science and Complex Causality through Experimentation in a Virtual World

This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.

Project Email: 
Lead Organization(s): 
Award Number: 
1416781
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

EcoXPT from videohall.com on Vimeo.

Comprehending how ecosystems function is important knowledge for citizens in making decisions and for students who aspire to become scientists. This understanding requires deep thinking about complex causality, unintended side-effects, and the strengths and limitations of experimental science. These are difficult concepts to learn due to the many interacting components and non-linear interrelationships involved. Ecosystems dynamics is particularly difficult to teach in classrooms because ecosystems involve complexities such as phenomena distributed widely across space that change over long time frames. Learning when and how experimental science can provide useful information in understanding ecosystems dynamics requires moving beyond the limited affordances of classrooms. The project will: 1) advance understanding of experimentation in ecosystems as it can be applied to education; 2) show how student learning is affected by having opportunities to experiment in the virtual world that simulate what scientists do in the real world and with models; and 3) produce results comparing this form of teaching to earlier instructional approaches. This project will result in a learning environment that will support learning about the complexities of the earth's ecosystem.

The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, developed as part of an earlier NSF-funded project. A MUVE is a simulated world in which students can virtually walk around, make observations, talk to others, and collect data. EcoMUVE simulates a pond and a forest ecosystem. It offers an immersive context that makes it possible to teach about ecosystems in the classroom, allowing exploration of the complexities of large scale problems, extended time frames and and multiple causality. To more fully understand how ecosystems work, students need the opportunity to experiment and to observe what happens. This project will advance this earlier work by developing ways for students to conduct experiments within the virtual world and to see the results of those experiments. The project will work with ecosystem scientists to study the types of experiments that they conduct, informing knowledge in education about how ecosystem scientists think, and will build opportunities for students that mirror what scientists do. The project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The resulting program will be tested against existing practice, the EcoMUVE program alone, and other programs that teach aspects of ecosystems dynamics to help teachers know how to best use these curricula in the classroom.

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 to Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Reclaiming Access to Inquiry-based Science Education (RAISE) for Incarcerated Students

This project will develop a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Award Number: 
1418152
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

This project is unique in targeting arguably the most vulnerable learners in the American education system: youth confined in juvenile corrections facilities. Three primary problems confronting science education in these settings are: (1) inadequate curriculum and resources; (2) inadequately prepared and supported teachers; and (3) a heterogeneous group of learners, many of whom have disabilities, are disengaged, and/or lack reading and mathematics skills. Failure to address these challenges and the broader educational needs of incarcerated juveniles has broad implications for society, so this project is timely and has high potential for broad impacts.

To address these problems project personnel will employ an iterative development process to develop a curriculum designed to increase access to and mastery of science content, concepts, and inquiry skills critical for careers in the 21st Century STEM workforce. They will then prepare teachers to implement the program in pilot testing in juvenile corrections facilities in Massachusetts. Specifically, the investigators will: (1) align and adapt an existing biology curriculum using Common Core State Standards and Universal Design for Learning principles; (2) develop all materials, digital supports and scaffolds, virtual learning environments and labs, assessments, and teacher professional development materials for one curriculum unit; (3) conduct usability evaluation of all materials and use the results to refine and finalize two curriculum units; (4) prepare teachers to implement the biology program in juvenile corrections education settings; (5) conduct a quasi-experimental study to examine the impacts of the biology program on the content knowledge and inquiry skills of students, their interests, and their levels of engagement; and, (6) disseminate the findings to various constituency groups. The final product will be a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Promoting Active Learning Strategies in Biology (PALS)

This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

Award Number: 
1417735
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

Knowledge Assets to Support the Science Instruction of Elementary Teachers (ASSET)

This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. 

Lead Organization(s): 
Award Number: 
1417838
Funding Period: 
Tue, 07/01/2014 to Fri, 06/30/2017
Full Description: 

This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The problem is particularly acute at the elementary level, where many teachers have limited science background and many have not taught science before. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge. The resulting knowledge resources will be made available to teachers on a website. The resource will support elementary teachers as they plan for science instruction, and to enable them to productively adapt their own science materials to improve student learning. The project will work with teachers in high minority schools.

The project will contribute to a developing theory of Collective Pedagogical Content Knowledge (C-PCK) which includes the research literature, practitioner literature and collective wisdom of practice. The researchers will seek to understand how C-PCK can be made more useful for teachers. The research questions are: (1) What are the strengths and weaknesses of the knowledge collection and synthesis method? (2) What factors must be taken into account in applying the knowledge collection and synthesis method across science topics? (3) What affordances and limitations does the web-based resource present for teachers primarily, and for teacher educators and instructional materials developers? (4) How does access to content-specific teaching knowledge affect teachers' planning and instruction? Content-specific teaching knowledge will be collected through literature reviews (for empirical knowledge) and a series of iterative, on-line expert panels (to gather practice-based knowledge). The two sources of knowledge will be synthesized for each of the science topics and organized in a web-based resource for teachers. A group of pilot teachers will use the resource as they plan for and teach a unit of instruction on the science topics. Project researchers will observe their instruction and interview the teachers to look for evidence of the resource facilitating their instruction. In addition, researchers will administer assessments to teachers and their students to gauge changes on content knowledge that might be attributable to the resource. Teacher feedback will be used to modify the web-based resource and maximize its usability.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Engineering Teacher Pedagogy: Using INSPIRES to Support Integration of Engineering Design in Science and Technology Classrooms

This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms. 

Award Number: 
1418183
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

National college and career readiness standards call for integrating engineering practices into science and mathematics instruction. Very few models for doing this have been implemented and studied. This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms. Professional development is provided to twenty high school biology teachers and twenty technology education teachers in the Baltimore County Public Schools.

The professional development consists of two five day sessions in two consecutive summers and follow up in two academic years as the teachers learn content, pedagogical content knowledge and classroom management skills. The project investigates the teachers' learning trajectories using validated instruments. A longitudinal study investigates teachers' change in practice and its role on student learning through classroom observations and examination of student artifacts. The study also investigates whether the change in practice persists over time and the extent to which the change in practice transfers to other learning environments. This study should elucidate the issues of teaching science concepts through the use of science and engineering practices.

Driven to Discover: Citizen Science Inspires Classroom Investigation

This project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings.

Award Number: 
1417777
Funding Period: 
Wed, 10/01/2014 to Sun, 09/30/2018
Full Description: 

Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.

Pages

Subscribe to Biology