Biology

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Engineering Teacher Pedagogy: Using INSPIRES to Support Integration of Engineering Design in Science and Technology Classrooms

This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms. 

Award Number: 
1418183
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

National college and career readiness standards call for integrating engineering practices into science and mathematics instruction. Very few models for doing this have been implemented and studied. This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms. Professional development is provided to twenty high school biology teachers and twenty technology education teachers in the Baltimore County Public Schools.

The professional development consists of two five day sessions in two consecutive summers and follow up in two academic years as the teachers learn content, pedagogical content knowledge and classroom management skills. The project investigates the teachers' learning trajectories using validated instruments. A longitudinal study investigates teachers' change in practice and its role on student learning through classroom observations and examination of student artifacts. The study also investigates whether the change in practice persists over time and the extent to which the change in practice transfers to other learning environments. This study should elucidate the issues of teaching science concepts through the use of science and engineering practices.

Driven to Discover: Citizen Science Inspires Classroom Investigation

This project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings.

Award Number: 
1417777
Funding Period: 
Wed, 10/01/2014 to Sun, 09/30/2018
Full Description: 

Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.

Building High School Students’ Understanding of Evolution through Collection and Analysis of Data, Evidence-based Arguments, and an Understanding of Heredity

This project will address widespread misunderstandings related to evolution by developing and testing a new high school curriculum unit and assessment measures focusing on biological evolution.  The new curriculum will integrate the three dimensions of the Next Generation Science Standards, the Common Core Mathematics standards on reasoning abstractly and quantitatively, and an English Language Arts standard for writing arguments focused on discipline-specific content. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418136
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Understanding evolution is fundamental to understanding contemporary biology, but many students do not understand the core ideas of evolutionary theory. Students misinterpret phylogenetic trees, they misunderstand fundamental concepts of common ancestry, and they have a poor grasp of evolutionary time. This project will address widespread misunderstandings related to evolution by developing and testing a new high school curriculum unit and assessment measures focusing on biological evolution. The University of Utah Genetic Science Learning Center and the American Association for the Advancement of Science are collaborating to develop a curriculum unit that models integration of the three dimensions of the Next Generation Science Standards: disciplinary core ideas, science practices, and crosscutting concepts. The new curriculum will also integrate Common Core Mathematics standards on reasoning abstractly and quantitatively, and an English Language Arts standard for writing arguments focused on discipline-specific content. This project builds on a previously funded NSF project that developed and tested six prototype lessons on natural selection. In classroom enactments the lessons showed preliminary promise for significantly increasing student understanding of natural selection and decreasing their misconceptions about natural selection and statistics.

This research and development project is based on the hypothesis that students will better understand the disciplinary core ideas about biological evolution when curriculum materials and instruction have certain identified features and when professional development experiences prepare teachers to use those materials and instructional practices. The research questions and research plan are designed to test this hypothesis using a randomized controlled trial design that allows for iterative rounds of refinement. The study will engage 20 teachers of grades 9-10 biology from across the U.S. who teach a diversity of students. To conduct the research, the project will develop measures of student understanding and a measure of teacher content knowledge. A measure of evidence-based evolution argumentation will also be developed for use with teachers and students.


Project Videos

2019 STEM for All Video Showcase

Title: Evolution: DNA and the Unity of Life

Presenter(s): Louisa Stark, Dina Drits-Esser, Sheila Homburger, & Molly Malone


Bio-Sphere: Fostering Deep Learning of Complex Biology for Building our Next Generation's Scientists

The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. Research teams will develop an innovative learning environment called Bio-Sphere, which will foster learning of complex science issues through hands-on design and engineering.

Award Number: 
1418044
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Today's citizens face profound questions in science. Preparing future generations of scientists is crucial if the United States is to remain competitive in a technology-focused economy. The biological sciences are of particular importance for addressing some of today's complex problems, such as sustainability and food production, biofuels, and carbon dioxide and its effect on our environment. Although knowledge in the life sciences is of critical importance, this is an area in which there are significantly fewer studies examining students' conceptions than in physics and chemistry. The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. A major strength of Bio-Sphere is the inclusion of hands-on design and engineering in biology, a field in which there are fewer instances of curricula that integrate engineering design at the middle school level. The units will enable an in-depth, cohesive understanding of science content, and Bio-Sphere will be disseminated nationally and internationally through proactive outreach to teachers as well as scholarly publications.

This project addresses the need to inculcate deep learning of complex science by bringing complex socio-scientific issues into middle school classrooms, and providing students with instructional materials that allow them to practice science as scientists do. Research teams will develop, iteratively refine and evaluate an innovative learning environment called Bio-Sphere. Bio-Sphere combines the strengths of hands-on design and engineering, engages students in the practices of science, and fosters learning of complex science issues, especially among underserved populations. Each Bio-Sphere unit presents a complex science issue in the form of a design challenge that students solve by conducting experiments, using visualizations in an electronic textbook, and connecting with the community. The units, aligned with the Next Generation Science Standards, provide greater coherence, continuity, and sustained instruction focused on uncovering and integrating key ideas over long periods of time. The project will follow a design-based research methodology. In Phase 1, the Bio-Sphere materials will be developed. Phase 2 will consist of studies in Wisconsin schools to generate existence proofs, i.e., examining enactments with respect to the designed objectives to understand how a design works. Phase 3 studies will focus on practical implementation: how to bring this innovative design to life in very different classroom contexts and without the everyday support of the design team, and will be conducted in rural schools in Alabama and North Carolina.

Climate Change Narrative Game Education (CHANGE)

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316782
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science. The goal of this project is to develop a place-based futuristic gaming simulation model that can easily extend to the other locales in other states, based on local climate change effects, local stakeholders, local economic and social effects to motivate the high school students in that area. CHANGE uses: (a) scientifically realistic text narratives about future Florida residents (text stories with local Florida characters, many years in the future based on GCC), (b) local, place-based approach grounded in west-central Florida Gulf Coast using scientific data, (c) a focus on the built environment, (d) simulations & games based on scientific data to help students learn principles of GCC so students can experience and try to cope with the potential long term effect of GCC via role-play and science-based simulation, and (e) a web-based eBook narrative where sections of narrative text alternate with simulations/computer games. The proposed project will work with 25 high school Marine Science teachers in 25 schools in Hillsborough County, Florida. The project delivers new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education.

This project employs and researches innovative models for delivering high school GCC education. GCC is a complex topic involving numerous factors and uncertainties making teaching this extremely important topic very difficult. The pioneering techniques proposed for this project will advance science education of GCC. It also will deliver new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education. Effective education is probably the most crucial part in our ability to cope with climate change. CHANGE will educate underserved low SES and minority high school students in Hillsborough County, and later elsewhere, with a model making GCC personally relevant to them.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

Misconceptions Oriented Standards-Based Assessment Resource for Teachers of High School Life Science (MOSART HSLS)

This project is developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART).

Lead Organization(s): 
Award Number: 
1316645
Funding Period: 
Sun, 09/01/2013 to Thu, 08/31/2017
Full Description: 

Researchers in the Harvard Smithsonian Center for Astrophysics are developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART). The project is developing 400 new test items that are based on core content domains for life science and are aligning these items with the previous National Science Education Standards to provide a connection to the earlier MOSART assessments. The project is also developing and validating two test instruments that address the cross cutting concepts of energy and matter for grades K-12, with a specific focus on flows, cycles and conservation. The new assessments will be made available to other researchers and practitioner through the project website and their on-line assessment system.

The assessment development is based on the process used in prior work that has produced the other MOSART instruments, including design efforts of assessment specialists, teachers, and learning scientists. Pilot items are tested through crowd-sourcing with online adult test takers. Classic test theory techniques, item response theory and Bayesian techniques model the student responses. Outcomes consist of item parameters, test and sub-test characteristics, and predictive linkages among items. A stratified, nationally representative sample of 250 high school biology teachers field test the items with classrooms of students. Descriptive statistics are generated to establish the state of student knowledge, pre-and post-test performance by item and by standard, and teacher knowledge, including the fraction of items for which teachers have correctly identified the most popular wrong answer. Descriptive analyses are followed by hierarchical linear modeling (HLM) of students within classrooms to examine the relationships between student and teacher knowledge. The dependent variables in HLM are student gain scores. Independent variables include teachers' knowledge, and student performance on grade K-8 assessments.

The MOSART instruments have been a strong line of assessment tools that are based on a model of cognition with a strong research base in misconceptions in science education. That research base is only slowly being augmented with a more coherent framework on learning progressions in STEM education, and the MOSART instruments will have the potential for extensive use for the foreseeable future. The grades 9-12 life science instrument based on coupling core ideas with science and engineering practices addresses the gaps in the current MOSART system of assessments. Given the rich literature on misconceptions in life science and the ubiquity of life science as a course at the high school level, the instrument promises to be as useful as the one for K-8 developed with MSP RETA funding. The new instruments on cross-cutting concepts provides a much needed set of assessments for researchers and practitioners, particularly teacher professional development providers. The transition to coupling core content and sciences practices with both the life sciences and the cross-cutting concepts is an opportunity to expand and update the suite of instruments.

Modeling Scientific Practice in High School Biology: A Next Generation Instructional Resource

This project addresses the need for a curricular resource package to support a high school biology course fully aligned to the core ideas, crosscutting concepts, and scientific practices of College and Career Readiness standards. The project will develop a suite of resources including educative curricular materials, pedagogical tools, intensive teacher professional development, and video documentation of exemplary implementation and investigate the impact of the instructional resource on teacher and student learning.

Award Number: 
1348990
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project addresses an immediate challenge facing high school science education: the need for a curricular resource package to support a high school biology course fully aligned to the core ideas, crosscutting concepts, and scientific practices of College and Career Readiness standards. The project will develop a suite of resources including educative curricular materials, pedagogical tools, intensive teacher professional development, and video documentation of exemplary implementation and investigate the impact of the instructional resource on teacher and student learning. The full curricular resource package will be coupled with an innovative online lesson builder to foster a cycle of continuous improvement, as teachers document their adaptations to the curricular resources over time.

The project has four phases. During the design phase a team of university faculty and science education experts work with two high school biology teachers to modify existing exemplary curriculum materials and instructional supports and align them to the College and Career Readiness science standards. These newly created materials and supports are piloted by the two collaborating teachers and data from the pilot are used to refine the materials. Once the package is complete and refined it will be implemented by an additional ten high school biology teachers. Data from the implementation will allow research into how teachers use the materials to plan their lessons, how the materials are enacted in classrooms and the effects the materials have on student learning. The final phase of the project will be to disseminate the resulting curriculum package and research findings to the public.

The project leverages, aligns and amplifies the NSF-developed resources of previously successful researchers and their tools, methodologies and supports. The need for truly aligned curricula and supports will be pressing as new core standards are implemented across the nation. There is a need for re-tooling the skills and pedagogical approaches of many teachers in the face of the current reforms. The project will meet these needs and provide a substantive contribution to the emerging national vision of quality science education.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

Pages

Subscribe to Biology