Network

InquirySpace 2: Broadening Access to Integrated Science Practices

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621301
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics courses. The project addresses the urgent national priority to improve science education as envisioned in the Next Generation Science Standards (NGSS) by focusing less on learning facts and equations and instead providing students with the time, skills, and resources to experience the conduct of science and what it means to be a scientist. This project builds on prior work that created a sequence of physics activities that significantly improved students' abilities to undertake data-based experiments and led to productive independent investigations. The goal of the InquirySpace project is to improve this physics sequence, extend the approach to biology and chemistry, and adapt the materials to the needs of diverse students by integrating tailored formative feedback in real time. The result will be student and teacher materials that any school can use to allow students to experience the excitement and essence of scientific investigations as an integral part of science instruction. The project plans to create and iteratively revise learning materials and technologies, and will be tested in 48 diverse classroom settings. The educational impact of the project's approach will be compared with that of business-as-usual approaches used by teachers to investigate to what extent it empowers students to undertake self-directed experiments. To facilitate the widest possible use of the project, a complete set of materials, software, teacher professional development resources, and curriculum design documents will be available online at the project website, an online teacher professional development course, and teacher community sites. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research. These features will include (1) educational games to teach data analysis and interpretation skills needed in the approach, (2) reduced dependence on reading and writing through the use of screencast instructions and reports, (3) increased reliance on graphical analysis that can make equations unnecessary, and (4) extensive use of formative feedback generated from student logs. The project uses an overarching framework called Parameter Space Reasoning (PSR) to scaffold students through a type of experimentation applicable to a very large class of experiments. PSR involves an integrated set of science practices related to a question that can be answered with a series of data collection runs for different values of independent variables. Data can be collected from sensors attached to the computer, analysis of videos, scientific databases, or computational models. A variety of visual analytic tools will be provided to reveal patterns in the graphs. Research will be conducted in three phases: design and development of technology-enhanced learning materials through design-based research, estimation of educational impact using a quasi-experimental design, and feasibility testing across diverse classroom settings. The project will use two analytical algorithms to diagnose students' learning of data analysis and interpretation practices so that teachers and students can modify their actions based on formative feedback in real time. These algorithms use computationally optimized calculations to model the growth of student thinking and investigation patterns and provide actionable information to teachers and students almost instantly. Because formative feedback can improve instruction in any field, this is a major development that has wide potential.

Facilitating Teachers' and Young Children's Science Learning Through Iterative Cycles of Teacher Professional Development

This professional development project engages a sample of kindergarten and 1st-grade teachers in a series of workshops, during which teachers will work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge.

Lead Organization(s): 
Award Number: 
1621400
Funding Period: 
Mon, 08/01/2016 to Tue, 07/31/2018
Full Description: 

Professional development is crucial to supporting early childhood teachers' ability to design and implement lessons that promote young children's science literacy as envisioned by the new Next Generation Science Standards (NGSS). Yet few studies have examined the impact of professional development on early childhood teachers' science knowledge and skills and in turn, how changes in teachers' knowledge and skills relate to student learning. Set within the context of a diverse district in the New York City Public Schools, this professional development project engages a sample of kindergarten and 1st-grade teachers in a series of Saturday workshops. During the workshops teachers work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge. This project is important intellectually because it adds to the knowledge base of how to engage young children in scientific inquiry. In practical terms, the project offers teachers a set of field-tested outcomes and products demonstrating how to effectively embed science-learning experiences into early childhood curriculum, instruction and assessment.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project uses an iterative process where teachers work on their own and collaboratively in Professional Learning Communities (PLC). Over the course of 2 years, these PLCs: (1) collaboratively design, field test and refine science-integrated lessons before implementing them in their classrooms; (2) participate in face-to-face and virtual meetings with other participating teachers and research project staff; and (3) receive mentoring and support to further reinforce their learning for NGSS teaching. Pre- and post-project measures will assess the professional development program's impact on 10 kindergarten and 10 first-grade teachers who serve a diverse array of 200 students in one of the nation's largest public school systems. Specifically, the project will examine: (a) teachers' lesson plans; (b) implementation of their lessons in the classroom; (c) samples of student work; and (d) students' learning behaviors. Qualitative and quantitative measures will be used to determine the project's anticipated outcomes which include: the characteristics of effective professional development for early childhood teachers; improved NGSS- based knowledge, skills and dispositions of kindergarten and first-grade teachers; and improved student science learning. In this way the project has the potential to catalyze new approaches to STEM learning, teaching and assessment at the early childhood level.

Developing Teachers as Computational Thinkers Through Supported Authentic Experiences in Computing Modeling and Simulation

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by NGSS to prepare middle school science teachers to implement rich computational thinking experiences within science classes.

Partner Organization(s): 
Award Number: 
1639069
Funding Period: 
Fri, 01/01/2016 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by the Next Generation Science Standards to prepare middle school science teachers to implement rich computational thinking (CT) experiences, such as the use, creation and analysis of computer models and simulations, within science classes.

The project, a partnership between the Santa Fe Institute and the Santa Fe Public School District, directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum. The PD program includes: an online PD network; workshops; webinars and conferences; practicum and facilitator support; and curricular and program guides. The overall approach to the project is design based implementation research (DBIR). Methods used for the implementation research includes: unobtrusive measures such as self-assessment sliders and web analytics; the knowledge and skills survey (KS-CT); interviews (teachers and the facilitators); analysis of teacher modified and created models; and observations of practicum and classroom implementations. Data collection and analysis in the implementation research serve two purposes: a) design refinement and b) case study development. The implementation research employs a mixed-method, nonequivalent group design with embedded case studies.

On the Design and Implementation of Practical Measures to Support Instructional Improvement at Scale

STEM Categorization: 
Day: 
Thu

Learn about two efforts to design and implement practical measures of science and mathematics teaching to inform school and district instructional improvement efforts.

Date/Time: 
9:30 am to 11:00 am
Session Materials: 

In contrast to evaluative research that uses accountability measures, improvement science research (Bryk, Gomez, Grunow, & LeMahieu, 2015), using practical measures is designed to provide practitioners with frequent, rapid feedback that enables them to assess and adjust instruction during the process of implementation. The resulting data is potentially of use to multiple stakeholders. For example, practical measures can orient teachers to attend to key aspects of the classroom that might be invisible to them.

Session Types: 
References: 

Bryk, A. S., Gomez, L. M., Grunow, A., & LeMahieu, P. (2015). Learning to improve: How America's schools can get better at getting better.
       Cambridge, MA: Harvard Education Press.
Yeager, D., Bryk, A. S., Muhich, J., Hausman, H., & Morales, L. (2013). Practical measurement. Carnegie Foundation for the Advancement of
       Teaching. Stanford, CA.

Kara Jackson, Jessica Thompson

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat in Science

This project investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

Award Number: 
1313713
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat is an Exploratory Project in the Teacher Strand of DRK-12 that investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

The project includes three major activities:

1) An experimental study testing the hypothesis that the influences of stereotype threat on individual students affects instructional processes for the class as a whole: Research participants include three teachers from 3 different school districts in Massachusetts, each with four 8th grade science classes, for a total sample of 12 science classes and approximately 300 students. The two treatment conditions (stereotype threat induced vs. not induced) are applied blindly to three classroom groups over a series of six lessons. The project uses existing surveys for gathering data, including "Communicative Interactions", RTOP subscales, subscales of the Constructivist Learning Environment Survey (CLES), and a brief student questionnaire measuring domain salience (e.g., self ranking of degree of participation in class). The analysis is conducted using Ordinary Least Squares (OLS) regression, with predictions of classroom instructional processes based on treatment condition, percentage of students in stereotyped group, and domain salience.

2) Collaboration with teachers as co-researchers to translate research findings into classroom practices and a prototype online professional development course: Three middle school teachers who participated in Study 1 serve as co-researchers, using the Universal Design for Learning model. The product is a prototype, online professional development modules that include self-paced presentations, small group facilitated discussions, asynchronous discussions, and live webcasts with experts, all focused on how teachers can implement strategies to mitigate stereotype threat in their practice. The design elements will be assessed in terms of clarity, accessibility, use, value, and promise.

3) Pilot testing of three professional development modules: The professional development component (via communities of practice) supports classroom teachers as they incorporate these strategies into their daily activities. The three teachers involved in the original study and design of modules participate in a six-week pilot study of the online professional development course, anticipated to consist of three modules, with teachers participating 3-4 hours per week. The course is evaluated through observations of professional development interactions (synchronous and asynchronous), interviews, implementation strategies, Moodle Electronic Usage Logs, online discussions, and a questionnaire. Descriptive statistics and regression analysis are used to seek predictors of use and contributions by teacher characteristics.

The project contributes critical knowledge about stereotype threat, a construct shown to contribute to disparities in achievement in STEM education. The outcomes of the project will include research findings that are to be submitted to science education research journals for publication; a prototype, online teacher professional development course on mitigating stereotype threat in STEM education classrooms; and dissemination of the course to teachers who are part of the CAST and Minority Student Achievement Networks.

Building Capacity for Science Standards Through Networked Improvement Communities

This project brings together teams of teachers, teacher educators, administrators, and researchers to inquire into the development of ambitious and equitable practices that support learning the scientific practices and creating scaffolds for the special language demands of the scientific practices, particularly for English Language Learners.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1315995
Funding Period: 
Tue, 10/01/2013 to Wed, 09/30/2015
Full Description: 

The college and career readiness standards in science represent both a challenge and an opportunity for educators. The opportunity lies in the vision that new standards set for the creation of a STEM ready workforce and scientifically literate citizens. Specifically, the standards clarify important content and science practices that students should be proficient in by the time they graduate. The bar is set higher for students, not only in terms of the content and practices but also in terms of the inherent linguistic demands of participating in the practices. Consequently, more will be required of teachers, teacher educators and the broader education community.

This project brings together teams of teachers, teacher educators, administrators, and researchers to inquire into the development of ambitious and equitable practices that support learning the scientific practices (such as developing and using scientific models, and building evidence-based scientific explanations and arguments, communicating findings, etc.) and creating scaffolds for the special language demands of the scientific practices, particularly for English Language Learners (Lee, Quinn & Valdés, 2013). The researchers are implementing a model for change referred to as a Networked Improvement Community, or NIC (Bryk, Gomez & Grunow, 2011). This community will link Local Improvement Networks (LINs are groups of teachers, teacher educators, administrators and researchers) through a web-based technological infrastructure to support the continual improvement of rigorous and equitable forms of classroom instruction. The LINs are all working with high English Language Learner populations and are committed to improving science instruction for all students. The investigators are helping LINs define a problem space using the standards, performance progressions for ambitious teaching practices, and data on students' performance on assessments. As a community, the investigators use these resources to ask: What works? For whom? And under what conditions? More than just sharing tools or training teacher developers, the NIC is engaged in rapid prototyping of tools and practices with a specific focus on improving instruction for English Language Learners. The Networked Improvement Community affords the opportunity for members to share and empirically test tools and other curricular resources so that productive variations of practices and tools can be generated. The system will accelerate the development of both teaching practices and professional learning models aligned with the college and career ready standards in science and understanding how to develop and sustain NICs that are oriented specifically around the improvement of instruction.

Innovate to Mitigate: A Crowdsourced Carbon Challenge

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316225
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines. Areas in which active cutting edge research on greenhouse gas mitigation is currently taking place include, among others, biology (photosynthesis, or biomimicry of photosynthesis to sequester carbon) and chemistry (silicon chemistry for photovoltaics, carbon chemistry for decarbonization of fossil fuels). Collaborating in teams of 2-5, participants engage with the basic science in these areas, and become skilled at applying scientific ideas, principles, and evidence to solve a design problem, while taking into account possible unanticipated effects. They refine their solutions based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

An interactive project website describes specifications for the challenge and provides rubrics to support rigor. It includes a library of relevant scientific resources, and, for inspiration, links to popular articles describing current cutting-edge scientific breakthroughs in mitigation. Graduate students recruited for their current work on mitigation projects provide online mentoring. Social networking tools are used to support teams and mentors in collaborative scientific problem-solving. If teams need help while working on their challenges, they are able to ask questions of a panel of expert scientists and engineers who are available online. At the end of the challenge, teams present and critique multimedia reports in a virtual conference, and the project provides awards for excellence.

The use of open innovation challenges for education provides a vision of a transformative setting for deep learning and creative innovation that at the same time addresses a problem of critical importance to society. Researchers study how this learning environment improves learning and engagement among participants. This approach transcends the informal/formal boundaries that currently exist, both in scientific and educational institutions, and findings are relevant to many areas of research and design in both formal and informal settings. Emerging evidence suggests that open innovation challenges are often successfully solved by participants who do not exhibit the kinds of knowledge, skill or disciplinary background one might expect. In addition, the greater the diversity of solvers is, the greater the innovativeness of challenge solutions tends to be. Therefore, it is expected that the free choice learning environment, the nature of the challenge, the incentives, and the support for collaboration will inspire the success of promising young participants from underserved student populations, as well as resulting in innovative solutions to the challenge given the diversity of teams.

Improving Capacity for Game-Based Research to Scale: A Conference

This workshop addresses the need to connect a range of experts involved in game development and research to develop and disseminate best practices. The workshop will also establish a network hub where educators and developers can find tools for implementing game-based curricula. The project will bring together approximately 100 early contributors, including researchers, teachers, game designers and publishers, to inform the next phases of research, development, and production in the field of games and learning.

Award Number: 
1258679
Funding Period: 
Mon, 10/01/2012 to Mon, 09/30/2013
Full Description: 

A growing number of educators are looking to game-based learning approaches to increase interest in and understanding of major science mathematics, engineering and technology (STEM) concepts. Serious games have demonstrated the capacity to engage learners in complex domains through role playing and problem solving. A key hypothesis driving many educators' interest in serious games is that they might reach broader scale than previous educational innovations because of their capacity to engage learners, give teachers highly polished learning resources, and provide parents, teachers, administrators and students tools for assessing learning. As examples of empirically-tested game-based learning materials proliferate, the field might benefit by connecting researchers, teachers, developers and policy makers so as to increase the field's capacity to reach scale.

This workshop addresses the need to connect a wide range of experts involved in game development and research to develop and disseminate best practices. The workshop will also establish a network hub where educators and developers can find tools for implementing game-based curricula. Specifically, the project will bring together approximately 100 early contributors, including researchers, teachers, game designers and publishers, to inform the next phases of research, development, and production in the field of games and learning. A closed beta experience will launch in late winter 2013 to support participants preparing for the workshop followed by a public workshop at the annual Games+Learning+Society in June 2013. The goal is to build the basis for a nationwide network of teachers, developers, academics, and industry leaders. If successful, this model will be held at other campuses, including Boston / MIT, Arizona State, and Vanderbilt.

The U.S. National Commission on Mathematics Instruction (USNC/MI): Representing the U.S. Mathematics Community Abroad

This project provides support for the U.S. National Commission on Mathematics Instruction, a primary means for ensuring U.S. participation in mathematics education at the international level. The project will facilitate interaction with mathematicians and mathematics educators from around the world as issues about instructional practices are addressed. The participation of representatives of USNC/MI on the international stage opens venues for collaborative research and opportunities to learn about successful practices from other countries.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1214813
Funding Period: 
Tue, 05/15/2012 to Wed, 04/30/2014
Full Description: 

This project provides support for the U. S. National Commission on Mathematics Instruction (USNC/MI), a primary means for ensuring U.S. participation in mathematics education at the international level. The project will facilitate periodic contact and interaction with mathematicians and mathematics educators from around the world as issues about instructional practices are addressed. The participation of representatives of USNC/MI on the international stage opens venues for collaborative research and opportunities to learn about successful practices from other countries. The USNC/MI regularly communicates with many professional organizations in mathematics education throughout the United States with reports and updates.

A major function of ICMI is to authorize studies on issues of current international concern in mathematics education, and the next topic to be addressed will be instruction related to number in the primary grades. Another thrust of the USNC/MI is to be represented at the International Congress in Mathematics Education that is scheduled every four years. The ICME-12 meeting will be held in July 2012 in Seoul, Korea and USNC/MI will be organizing several events and hosting a major exhibit throughout the week long meeting.

Pages

Subscribe to Network