Sustainability

Forming Better STEM Career Trajectories: Sustaining and Scaling-Up CAP

This study investigates the sustainability of the College Ambition Program (CAP) that has demonstrated promise in increasing the number of students who attend postsecondary colleges or universities. The CAP is a whole school high school intervention that promotes a college-going culture in which all students are provided resources that encourage postsecondary attendance with a special emphasis on STEM.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316702
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

This study investigates the sustainability of the Michigan State University College Ambition Program (CAP) that has been developed with NSF ITEST funding and has demonstrated promise in increasing the number of students who attend postsecondary colleges or universities. The CAP is a whole school high school intervention that promotes a college-going culture in which all students are provided resources that encourage postsecondary attendance with a special emphasis on STEM. CAP is an integrated program including tutoring and mentoring, course counseling and advising, financial aid planning and assistance; and college visits. The modifications for sustainability include moving the CAP functions from the graduate students from the university and the faculty who developed the intervention to high school teachers and preservice teachers. Tutoring would be provided by peers rather than the undergraduate students in previous studies.

The CAP research study is a within study experiment using student-level estimates of program effects. In this study, students will be randomlly encouraged to receive CAP services through the use of a targeted "nudge". The nudge is in the spirit of an encouragement design where intention to treat does not precisely coincide with actual treatment due to noncompliance, but the assignment mechanism still provides for variation in the treatment. The nudge experiment is modeled after comparable trials in health care research. The experiment is a type of standard randomized block design, in which students are assigned to treatments within blocks defined as schools. Students are encouraged to use CAP services which include an app that helps them decide which college is the best fit for them. Outcome measures include post secondary matriculation and student motivation and career planning data.

This study is intended to examine the efficacy of the CAP program and has the potential to inform practice, policy and research. It is difficult to study whole school interventions, and this study is testing the methodology to detect an effect of the CAP intervention by assigning students randomly to experimental conditions within the intervention. The potential benefits of the study are alternatives to the gold standard randomized controlled study where the school is the unit of assignment and the unit of analysis. Successful findings support the potential for rigorous studies to be conducted with fewer schools in the sample than traditional power analyses indicate.

Next Generation Preschool Science: An Innovative Program to Facilitate Young Children's Learning of Science Practices and Concepts

This project is developing, iteratively refining and evaluating a science curriculum for Pre-K classrooms with units on Plant Growth, How Things Move, and What Makes Shadows by integrating traditional classroom resources (large and small group activities, hands-on activities, read-alouds) with digital media (touch screen tablets, photos and short videos, and games/simulations).

Lead Organization(s): 
Award Number: 
1316550
Funding Period: 
Sun, 09/15/2013 to Fri, 08/31/2018
Full Description: 

SRI is developing, iteratively refining and evaluating a science curriculum for Pre-K classrooms with units on Plant Growth, How Things Move, and What Makes Shadows. Working with EDC and WGBH, the project is integrating traditional classroom resources (large and small group activities, hands-on activities, read-alouds) with digital media (touch screen tablets, photos and short videos, and games/simulations). The importance of this approach is that it facilitates the implementation of quality science instruction in pre-schools by reducing the resources and commitment needed. The project is also producing professional development resources for teachers. Project evaluation is by the Concord Evaluation Group. The products of the project are being distributed by PBS Media.

Using an Evidence Centered Design approach, the project is doing a Phase I development and pilot study during the first two years, followed by a Phase II field study in year 3, with 10 classrooms in California and 10 in New York, half of which will be for comparison purposes. Ten children from each classroom are being selected through a stratified randomization process for a more detailed examination of student outcomes. There are 8 research questions covering the three phases of the project; development, implementation, and sustainability. Data collection on child learning is using the project developed science assessment as well as a standardized assessment of children's science learning LENS on Science. Evidence on teachers' confidence is being collected with the Preschool Teachers Attitudes and Beliefs about Science scale (P-TABS). In addition, the project is conducting interviews and observations in the 10 classrooms where teachers are implementing the curriculum units.

Educating the Imagination: A Studio Design for Transformative Science Learning

Educating the Imagination will develop a studio approach to science for underrepresented high school students. The approach integrates scientific and artistic habits of mind and forms of engagement for meaningful learning in water-related sciences. Youth will a) investigate significant water-related phenomena, b) develop creative responses to the phenomena that foster new understandings and possibilities for action, and c) exhibit their responses community-wide to involve others in re-imagining water locally and globally.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1135120
Funding Period: 
Sat, 10/01/2011 to Mon, 09/30/2013
Full Description: 

TERC, in collaboration with the Boston Arts Academy is developing an innovative studio learning environment for students in grades 7-9. This pilot project focuses on object-centered inquiry about water and water-related problems of local and global significance. The project promotes student learning through multi-faceted studies involving hydrology, history, health, digital media, web-based artifact generation, real world data collection, interactions with scientists and artists, and community exhibitions of student work. The primary goal of the Educating the Imagination project is to develop a more effective model for engaging and improving the science learning and achievement of underrepresented urban students.

Studio learning intentionally integrates experimentation with practices of analysis, interpretation, critique of work and conceptual development. During a four week summer studio program, students, guided by teachers and scientists, will produce research-based projects about water and create plans to exhibit their work in the Boston area during the school year. Students will be assessed along multiple dimensions ranging from the depth of their understanding of water science ideas, their ability to make claims and arguments, their use of multiple tools and modes of representation, and the quality of their presentations. Over a two year period researchers will collect data on the studio design model and student learning to determine which aspects of the studio are effective in engaging students in object-oriented inquiry related to important water science ideas and problems.

Educating the Imagination will provide valuable insights about the studio design model and its application to promote science learning. In addition, this project directly addresses the problem of inequality in opportunities to learn and participate in science by developing and testing an innovative, non-traditional learning model with underrepresented urban students. The results of this project could significantly change how we think about and structure STEM learning environments in urban settings.

Persistence of Teacher Change in Rural Schools: Assessing the Short- and Long-Term Impact of Professional Development on K-2 Science Instruction

This research study is examining the persistence of improved teacher skills achieved during the K-2 Science & Technology Assistance for Rural Teachers and Small Districts project (K-2 STARTS). K-2 STARTS provided four years of professional development to teachers in 16 rural school districts with high populations of traditionally underserved students. Project data indicates that the project increased teacher content knowledge, pedagogical content knowledge, abilities to integrate science and literacy and to use research-based instructional strategies.

Project Email: 
Lead Organization(s): 
Award Number: 
1119589
Funding Period: 
Thu, 09/15/2011 to Sun, 08/31/2014
Project Evaluator: 
Loretta Kelley
Full Description: 

This research study is examining the persistence of improved teacher skills achieved during the K-2 Science & Technology Assistance for Rural Teachers and Small Districts project (K-2 STARTS) funded by the State of California.

K-2 STARTS provided four years of professional development to teachers in 16 rural school districts in California with high populations of traditionally underserved students. 39 teachers each received 110 hours of professional development. Project data indicate that the project met its goals by increasing teacher content knowledge, pedagogical content knowledge, abilities to integrate science and literacy and to use research-based instructional strategies. K-2 STARTS also improved the capacity of teachers to use science resources and to network with teachers from their own and other rural districts.

This project is doing a longitudinal research study by extending data collection for 35 teachers for two years after the end of K-2 STARTS. It is using the measures from the original evaluation, which include teacher surveys and interviews, classroom observations, surveys for school administrators, teacher-developed unit artifacts, and student science notebooks, and adding two more measures, administrative interviews and school/district documents. In the final year, the project is doing data analysis and dissemination. The project is exploring the persistence of the knowledge and skills of the teachers over time, as well as their continued use of science instructional practices. It will also study the persistence of school/district support for science education.

External evaluation is being conducted by Dr. Loretta Kelley of Kelley, Peterson, and Associates, Inc. It focuses on project progress through formative and summative components.

Longitudinal studies of the effects of teacher professional development are rare. The increased knowledge concerning the persistence of the new knowledge and skills obtained through K-2 STARTS professional development, and why and to what extent they decay over time, is a significant goal.

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Herrington)

This project scales and further tests the Target Inquiry professional development model. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University with chemistry teachers. The project is also producing a website of instructional materials for middle and secondary science.

Partner Organization(s): 
Award Number: 
1118658
Funding Period: 
Mon, 08/15/2011 to Wed, 07/31/2013
Full Description: 

This project scales and further tests the Target Inquiry (TI) professional development model. The TI model involves teachers in three core experiences: 1) a research experience for teachers (RET), 2) materials adaptation (MA), and 3) an action research (AR) project. The original program was implemented with high school chemistry teachers at Grand Valley State University (GVSU), and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students. The scale-up and further testing would involve adding physics, biology and geology at GVSU, and implementing the program at Miami University (MU) with chemistry teachers. Three research questions will be studied:

1) How do the three TI core experiences influence in-service high school science teachers' (i) understanding of the nature of science; (ii) attitudes and beliefs about inquiry instruction; and (iii) classroom instructional methods in two new applications of the TI model?

2) How does teacher participation in TI affect students' process skills (scientific reasoning and metacognition) and conceptual understanding of science in two new applications of the TI model?

3) What are the challenges and solutions related to implementing TI in science disciplines beyond chemistry and in other regions?

The research design is quasi-experimental and longitudinal, incorporating implementation with research, and using quantitative and qualitative methods blended in a design research framework. A total of 54 middle and high school science teachers are being recruited for the study. The TI group is completing the TI program (N = 27; 15 at GVSU; 12 at MU) while the comparison group (same sizes and locations) is not. The comparison group is matched according to individual characteristics and school demographics. All teachers are being studied, along with their students, for 4 years (pre-program, post-RET, post-MA, post-AR/post-program). TI teachers are taking 15 credits of graduate level science courses over three years, including summers. Courses include a graduate seminar focused on preparing for the research experience, the research experience in a faculty member's science lab during the summer, application of research to teaching, action research project development, adaptation and evaluation of inquiry-focused curricula, and interpretation and analysis of classroom data from action research. Consistent feedback from professional development providers, other teachers, and evaluation, including comparison with the previous implementation, contributes to a design-based approach. Teacher factors being studied include beliefs about the nature of science, inquiry teaching knowledge and beliefs, and quality of inquiry instruction. Student factors being studied include scientific reasoning; metacognition, self-efficacy, and learning processes in science; and content knowledge and conceptual understanding. Only established quantitative and qualitative instruments are being used. Quantitative analysis includes between-group comparisons by year on post-tests, with pre-tests as covariates, and multi-level models with students nested within teachers, and teachers within sites, with the teacher level as the primary unit of change. Trends over time between the treatment and comparison groups are being examined. The evaluation is using a combination of pre/post causal comparative quantitative measures and relevant qualitative data from project leaders and participants, as well as from the comparison group, to provide formative and summative evaluation input.

Outcomes of the project include documentation and understanding of the impacts on science teachers' instruction and student outcomes of research experiences for teachers when they are supported by materials adaptation and action research, and an understanding of what it takes to scale the model to different science disciplines and a different site. The project is also producing a website of instructional materials for middle and secondary science.

Sustainability Roundable

Day: 
Thu

Join this roundtable to discuss what we understand about sustainability within dynamic systems, adoption versus adaptation, scaling practices up or down, and other challenges to keeping our work alive.

Date/Time: 
4:30 pm to 5:30 pm
Session Type: 
Project Management & Implementation Roundtable
Facilitators: 

Please bring your questions and ideas on sustainability to a roundtable to discuss with colleagues. 

 

Some initial thoughts to consider:

The Scalability and Sustainability of Professional Development: Challenges in Preparing Mathematics PD Facilitators

Day: 
Fri

Three projects investigating different approaches to preparing mathematics professional development facilitators will compare their approaches and discuss strengths and limitations with the participants.

Date/Time: 
10:00 am to 12:00 pm
Session Type: 
Panel

What are the central challenges that face research and development teams in their efforts to prepare facilitators to do the work of leading mathematics professional development? 

Establishing a Roadmap for Large-Scale Improvement of K-12 Education in the Geographical Sciences

This project will engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. This will result in a set of publicly reviewed, consensus reports that will guide collaborative efforts and broaden awareness of the acute need for geographic literacy and geographic science education.

Award Number: 
1049437
Funding Period: 
Wed, 09/15/2010 to Fri, 08/31/2012
Project Evaluator: 
Education and Training Institute
Full Description: 

Having a geographically literate population will be critical to the economic stability, physical security, and environmental sustainability of the United States in the 21st century. Yet the U.S. still lags far behind the other developed nations in education in the geographical sciences. Recognizing the risk that geographic illiteracy poses for our country, the National Geographic Society (NGS), in collaboration with the Association of American Geographers, American Geographical Society, and National Council for Geographic Education, proposes to engage in a set of research synthesis and dissemination activities that will provide road maps for the design of assessment, professional development, instructional materials, public information, and educational research for the next decade. The work will be done by a broad range of experts from K-12 institutions as well as the geographical science and educational research communities

Building on a 25 year collaboration, NGS and its partners propose to engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. The result of this effort will be a set of publicly reviewed, consensus reports that will guide the collaborative efforts of the project partners and the larger geographic education community, as well as broaden awareness of the increasingly significant and acute need for geographic literacy and education in the geographical sciences in our country.

This project will create three in-depth "roadmap" reports targeted at practitioners, takeholders, and policymakers. Developed by expert committees, these three reports will be on:

- Assessment frameworks for systematic monitoring and continuous improvement of geographic education programs.

- Professional development for teachers and instructional materials to support large-scale educational improvement across diverse contexts.

- Educational research agenda to set priorities and identify appropriate methodologies for research that will improve geographic education into the future.

These three reports will be summarized in an executive summary written for a broad audience of educators, policymakers, and concerned citizens.

In addition to these consensus reports, the project will also conduct research on public understanding of the nature and importance of geographic literacy, with particular attention to the key audiences of educators, policymakers, and citizens. In addition to shaping the project's reports, this research will inform the broader communications and dissemination efforts of this project and its partners.

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) with Geospatial Information Technology

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019645
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Haynie Research and Evaluation
Full Description: 

STORE is developing and piloting classroom uses of GIS-based interactive data files displaying climatological, topographical, and biological data about an especially ecologically and topographically diverse section of mid-California and a section of western New York State, plus projected climate change outcomes in 2050 and 2099 from an IPCC climate change model. Both areas contain weather stations. The participating students and teachers live in those areas, hence the place-based focus of the project.

To help teachers make curricular decisions about how to use these data with their students, the project has, with input from six design partner teachers, produced a curriculum module exemplar consisting of six lessons. The lessons start with basic meteorological concepts about the relationship between weather systems and topography, then focus on recent climatological and land cover data. The last two lessons focus on IPCC-sanctioned climate change projections in relation to possible fates of different regional species. Technology light versions of these lessons send students directly to map layers displaying the data for scientific analysis. Technology-heavy versions address the additional goal of building students' capacities to manipulate features of geographic information systems (GIS). Hence, the technology-heavy versions require use of the ARC GIS Explorer Desktop software, whereas the technology light versions are available in both the ARC software and in Google Earth. Google Earth makes possible some student interactivity such as drawing transects and studying elevation profiles, but does not support more advanced use of geographic information system technology such as queries of data-containing shape files or customization of basemaps and data representational symbology.

Answer keys are provided for each lesson. Teachers have in addition access to geospatial data files that display some storm systems that moved over California in the winter of 2010-2001 so that students can study relationships between actual data about storm behavior and relationship to topography and the climatological data which displays those relationships in a summary manner. This provides the student the opportunity to explore differences between weather and climate.

To increase the likelihood of successful classroom implementation and impact on student learning, the professional development process provides the conditions for teachers to make good adaptability decisions for successful follow-through. Teachers can implement the six lessons or adapt them or design their own from scratch. The project requires that they choose from these options, explain on content representation forms their rationales for those decisions, and provide assessment information about student learning outcomes from their implementations. The project provides the teachers with assessment items that are aligned to each of the six lessons, plus some items that test how well the students can interpret the STORE GIS data layers.

All of this work is driven by the hypothesis that science teachers are more likely to use geospatial information technology in their classrooms when provided with the types of resources that they are provided in this project. In summary, these resources include:

1.     tutorials about how to use the two GIS applications

2.     sufficiently adaptive geospatial data available in free easily transportable software applications

3.     lessons that they can implement as is, adapt, or discard if they want to make up their own (as long as they use the data)

4.     supportive resources to build their content knowledge (such as overview documents about their states' climates and information about the characteristics of each data layer and each data set available to them).

 

The growth and evolution of the teachers' technological pedagogical content knowledge is being tracked through interviews, face-to-face group meetings, and classroom observations. Also being tracked is the extent to which the teachers and students can master the technology applications quickly and on their own without workshops, and how well teachers provide feedback to the students and assess their learning outcomes when implementing STORE lessons. As the project moves into its third and final year, we will be studying outcomes from the first classroom implementation year (i.e. year two of the project) and determining to what extent the professional development strategies need to be revised in relation to how the teachers are responding to the project resources and forms of professional support. In the end, the project will contribute to the knowledge base about what professional development strategies are appropriate for getting teachers to use these types of resources, what decisions teachers make about how to use the resources for different courses and student groups they teach, and what are the outcomes of those uses in terms of curricular material, instructional strategies, and student learning.

Iterative Model Building (IMB): A Program for Training Quality Teachers and Measuring Teacher Quality

This project aims to improve professional development programs for pre-service teachers (PSTs) as a way to improve student learning in mathematics and science. PSTs engage in a series of teaching cycles, and then engage in lesson study groups to develop, teach, and analyze a whole-class lesson. The cycle is completed by reexamining students' knowledge in teaching experiments with pairs of students. These teaching cycles are called Iterative Model Building (IMB).

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0732143
Funding Period: 
Wed, 08/15/2007 to Tue, 07/31/2012
Project Evaluator: 
Center for Evaluation and Education Policy

Pages

Subscribe to Sustainability