Adaptation

CAREER: Adapting Curriculum for Learning in Mathematics Education (ACCLIME): Processes and Factors in Teachers' Evolving Adaptations of Curriculum Materials

The ACCLIME project investigates teachers' uses and adaptations of CMP, an NSF-funded middle school curriculum. The study seeks to better articulate: (1) the ways that teachers adapt CMP over time and how they develop professionally as a result of using the curriculum materials; (2) the connection between district policy, resource development, and teachers' curriculum processes; and (3) the dynamic nature of districts' long-term curriculum implementations.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0746573
Funding Period: 
Sun, 06/01/2008 to Fri, 05/31/2013
Full Description: 

The ACCLIME project investigates teachers' uses and adaptations of CMP, an NSF-funded middle school curriculum. The project comprises three nested series of case studies involving school districts that are long-term CMP implementers and that have provided substantial and ongoing support, and 16 middle school mathematics teachers within these districts. The study seeks to better articulate: (1) the ways that teachers adapt CMP over time and how they develop professionally as a result of using the curriculum materials; (2) the connection between district policy, resource development, and teachers' curriculum processes; and (3) the dynamic nature of districts' long-term curriculum implementations.

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Herrington)

This project scales and further tests the Target Inquiry professional development model. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University with chemistry teachers. The project is also producing a website of instructional materials for middle and secondary science.

Partner Organization(s): 
Award Number: 
1118658
Funding Period: 
Mon, 08/15/2011 to Wed, 07/31/2013
Full Description: 

This project scales and further tests the Target Inquiry (TI) professional development model. The TI model involves teachers in three core experiences: 1) a research experience for teachers (RET), 2) materials adaptation (MA), and 3) an action research (AR) project. The original program was implemented with high school chemistry teachers at Grand Valley State University (GVSU), and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students. The scale-up and further testing would involve adding physics, biology and geology at GVSU, and implementing the program at Miami University (MU) with chemistry teachers. Three research questions will be studied:

1) How do the three TI core experiences influence in-service high school science teachers' (i) understanding of the nature of science; (ii) attitudes and beliefs about inquiry instruction; and (iii) classroom instructional methods in two new applications of the TI model?

2) How does teacher participation in TI affect students' process skills (scientific reasoning and metacognition) and conceptual understanding of science in two new applications of the TI model?

3) What are the challenges and solutions related to implementing TI in science disciplines beyond chemistry and in other regions?

The research design is quasi-experimental and longitudinal, incorporating implementation with research, and using quantitative and qualitative methods blended in a design research framework. A total of 54 middle and high school science teachers are being recruited for the study. The TI group is completing the TI program (N = 27; 15 at GVSU; 12 at MU) while the comparison group (same sizes and locations) is not. The comparison group is matched according to individual characteristics and school demographics. All teachers are being studied, along with their students, for 4 years (pre-program, post-RET, post-MA, post-AR/post-program). TI teachers are taking 15 credits of graduate level science courses over three years, including summers. Courses include a graduate seminar focused on preparing for the research experience, the research experience in a faculty member's science lab during the summer, application of research to teaching, action research project development, adaptation and evaluation of inquiry-focused curricula, and interpretation and analysis of classroom data from action research. Consistent feedback from professional development providers, other teachers, and evaluation, including comparison with the previous implementation, contributes to a design-based approach. Teacher factors being studied include beliefs about the nature of science, inquiry teaching knowledge and beliefs, and quality of inquiry instruction. Student factors being studied include scientific reasoning; metacognition, self-efficacy, and learning processes in science; and content knowledge and conceptual understanding. Only established quantitative and qualitative instruments are being used. Quantitative analysis includes between-group comparisons by year on post-tests, with pre-tests as covariates, and multi-level models with students nested within teachers, and teachers within sites, with the teacher level as the primary unit of change. Trends over time between the treatment and comparison groups are being examined. The evaluation is using a combination of pre/post causal comparative quantitative measures and relevant qualitative data from project leaders and participants, as well as from the comparison group, to provide formative and summative evaluation input.

Outcomes of the project include documentation and understanding of the impacts on science teachers' instruction and student outcomes of research experiences for teachers when they are supported by materials adaptation and action research, and an understanding of what it takes to scale the model to different science disciplines and a different site. The project is also producing a website of instructional materials for middle and secondary science.

Sustainability Roundable

Day: 
Thu

Join this roundtable to discuss what we understand about sustainability within dynamic systems, adoption versus adaptation, scaling practices up or down, and other challenges to keeping our work alive.

Date/Time: 
4:30 pm to 5:30 pm
Session Type: 
Project Management & Implementation Roundtable
Facilitators: 

Please bring your questions and ideas on sustainability to a roundtable to discuss with colleagues. 

 

Some initial thoughts to consider:

How Can Tools for Teachers Foster High-leverage Classroom Discourse and Assessment Practices

Day: 
Thu

Presenters will enlist audience’s help to expand their thinking about how a suite of Web-based tools that support ambitious forms of science teaching might be adapted for use beyond current research contexts and in more innovative ways. Classroom video of tool-supporting teaching will be shown. 

Date/Time: 
8:30 am to 9:45 am
Session Type: 
Product Feedback Session

How can tools for teachers foster high-leverage classroom discourse and assessment practices?

Changing Curriculum, Changing Practice

This project is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum.

Award Number: 
1019945
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Full Description: 

The CME Project Mathematical Practices Implementation Study project (formerly called "Changing Curriculum, Changing Practice"), led by mathematics educators at the Education Development Center, is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum. The project includes a moderate level of professional development and the development of valid and reliable instruments to assess teachers' mathematical knowledge for teaching and their instructional practices.

This four-year, mixed-methods study is investigating the conjecture that high school teachers' implementation of a curriculum emphasizing mathematical habits of mind will lead to measurable changes in teachers' mathematical knowledge and their instruction. The investigators are also interested in the relationships among (1) teachers' prior knowledge, (2) their use of the curriculum and (3) the school-level support for implementation. The investigators are studying the implementation of the curriculum by 70 teachers in 12 schools that vary in socio-economic status of the students and geographic location. The research design includes observations of the instruction of a sub-sample of nine teachers to obtain a finer-grained measure of instructional practice. They are developing or adapting existing instruments that measure teachers' knowledge and alignment of instruction with the goals of teaching mathematical habits of mind. Using the Instructional Quality Assessment rubric during visits to the classroom, they are assessing students' opportunities to develop mathematical thinking skills. The use of mixed-methods approaches will allow the researchers to analyze the data from multiple perspectives.

This study is part of a long-term effort to help high school students develop specific mathematical habits of mind. The current study is building on previous curriculum development and also developing insights for future studies investigating students' adoption of mathematical habits of mind. The current project is an important effort to understand the roles teachers play in implementing curricular changes that have the potential for improving student achievement in mathematics. Teachers are the critical bridging agents who connect curriculum and learners. This study will help to explain how teachers' knowledge, teachers' instruction, and teachers' contexts within schools contribute to or detract from the faithful implementation of the goals intended by a curriculum. It will lay a foundation for understanding future efforts to assess what students learn and how they learn it.

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) with Geospatial Information Technology

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019645
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Haynie Research and Evaluation
Full Description: 

STORE is developing and piloting classroom uses of GIS-based interactive data files displaying climatological, topographical, and biological data about an especially ecologically and topographically diverse section of mid-California and a section of western New York State, plus projected climate change outcomes in 2050 and 2099 from an IPCC climate change model. Both areas contain weather stations. The participating students and teachers live in those areas, hence the place-based focus of the project.

To help teachers make curricular decisions about how to use these data with their students, the project has, with input from six design partner teachers, produced a curriculum module exemplar consisting of six lessons. The lessons start with basic meteorological concepts about the relationship between weather systems and topography, then focus on recent climatological and land cover data. The last two lessons focus on IPCC-sanctioned climate change projections in relation to possible fates of different regional species. Technology light versions of these lessons send students directly to map layers displaying the data for scientific analysis. Technology-heavy versions address the additional goal of building students' capacities to manipulate features of geographic information systems (GIS). Hence, the technology-heavy versions require use of the ARC GIS Explorer Desktop software, whereas the technology light versions are available in both the ARC software and in Google Earth. Google Earth makes possible some student interactivity such as drawing transects and studying elevation profiles, but does not support more advanced use of geographic information system technology such as queries of data-containing shape files or customization of basemaps and data representational symbology.

Answer keys are provided for each lesson. Teachers have in addition access to geospatial data files that display some storm systems that moved over California in the winter of 2010-2001 so that students can study relationships between actual data about storm behavior and relationship to topography and the climatological data which displays those relationships in a summary manner. This provides the student the opportunity to explore differences between weather and climate.

To increase the likelihood of successful classroom implementation and impact on student learning, the professional development process provides the conditions for teachers to make good adaptability decisions for successful follow-through. Teachers can implement the six lessons or adapt them or design their own from scratch. The project requires that they choose from these options, explain on content representation forms their rationales for those decisions, and provide assessment information about student learning outcomes from their implementations. The project provides the teachers with assessment items that are aligned to each of the six lessons, plus some items that test how well the students can interpret the STORE GIS data layers.

All of this work is driven by the hypothesis that science teachers are more likely to use geospatial information technology in their classrooms when provided with the types of resources that they are provided in this project. In summary, these resources include:

1.     tutorials about how to use the two GIS applications

2.     sufficiently adaptive geospatial data available in free easily transportable software applications

3.     lessons that they can implement as is, adapt, or discard if they want to make up their own (as long as they use the data)

4.     supportive resources to build their content knowledge (such as overview documents about their states' climates and information about the characteristics of each data layer and each data set available to them).

 

The growth and evolution of the teachers' technological pedagogical content knowledge is being tracked through interviews, face-to-face group meetings, and classroom observations. Also being tracked is the extent to which the teachers and students can master the technology applications quickly and on their own without workshops, and how well teachers provide feedback to the students and assess their learning outcomes when implementing STORE lessons. As the project moves into its third and final year, we will be studying outcomes from the first classroom implementation year (i.e. year two of the project) and determining to what extent the professional development strategies need to be revised in relation to how the teachers are responding to the project resources and forms of professional support. In the end, the project will contribute to the knowledge base about what professional development strategies are appropriate for getting teachers to use these types of resources, what decisions teachers make about how to use the resources for different courses and student groups they teach, and what are the outcomes of those uses in terms of curricular material, instructional strategies, and student learning.

Pre-K Early Algebra Through Quantitative Reasoning (PreKEA)

This project is initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds.

Lead Organization(s): 
Award Number: 
1212766
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Full Description: 

This is an exploratory project that endeavors to initiate an innovative approach to preK students’ development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the successful Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The PreKEA project will adapt and refocus the conceptual framework of the E-D pre-numeric stage with respect to early algebra in the context of teaching experiments with preK and kindergarten students. A primary goal of the project is to obtain a proof-of-concept and lay down a conceptual and empirical foundation for a subsequent full research and development DR K-12 proposal.

The importance of early algebra (EA) in mathematics education has been acknowledged by the publication of a separate chapter solely devoted to early algebra and algebraic reasoning in the second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007). Given that “much prior research highlights the difficulties that middle and high school students have with algebra,” the proponents of EA argue that “the weaving of algebra throughout the K-12 curriculum could lend coherence, depth, and power to school mathematics, and replace late, abrupt, isolated, and superficial high school algebra courses” (Carraher & Schliemann, 2007, pp. 670-671). At the same time, “quantitative thinking is unavoidable in EA” as it “does not seem realistic to first introduce youngsters to the algebra of number and then proceed to problems steeped in quantities as ‘applications’ of algebra” (ibid., p. 671). While the E-D curriculum with its proven track record focuses on the development of quantitative and measurement reasoning among elementary-aged children in grades 1–6, it is feasible that much younger children, even four-year-olds, can access the pre-numeric ideas. This is supported by research by Baillargeon (2001) and Wynn (1997) who showed that infants as young as two-months old demonstrate the development of number and measurement concepts. The PreKEA project will identify key concepts of the E-D pre-numeric stage relevant to four-year-olds and develop and explore lesson units which can be integrated into US preK settings. The project team combines the international expertise of PI Berkaliev who served as project coordinator and international liaison for an NSF-funded international project US-Russian Working Forum on Elementary Mathematics: Is the Elkonin-Davydov Curriculum a Model for the US? and who also brings the perspective of a mathematician, with the theoretical, methodological, and empirical expertise of co-PI Dougherty who has been one of the leading figures in working with, adapting, and studying the implementations of the E-D curriculum in the US, as well as a group of five leading Russian experts who developed, implemented, and studied the original E-D curriculum. The project resources include the E-D curriculum materials and articles only available in Russian.

The PreKEA (PreK Early Algebra through Quantitative Reasoning) project has the potential to make contributions beyond the preK early algebra curriculum that it will develop and implement. The PreKEA project can benefit disadvantaged students by using an innovative approach to EA instruction that has the potential to broaden access and at an early stage change the situation when disproportionately many disadvantaged students are not prepared adequately for learning quantitative reasoning and algebra. With research in preK narrowly focused on particular topics, the results of this project have the potential to inform a broader field including mathematics education and early childhood education with evidence that young children can access and interact with more complex mathematics, extending beyond counting.

Developers and researchers at the Illinois Institute of Technology and Iowa State University are initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds. The adaptation is being done in collaboration with experts in Russia who were involved in the original E-D development. A primary goal of the project is to obtain a proof-of-concept and lay down a conceptual and empirical foundation for a subsequent research and development.

The research progresses using teaching experiments involving six students. Each student is engaged in 15 minute one-on-one sessions twice each week. Sessions are videotaped and transcribed for further analysis. The analysis of the data is conducted by the project team in collaboration with Russian consultants.

The research findings and methodology will provide grounds for supporting more complex and sophisticated mathematical ideas that will inform curriculum development for pre-K students and teachers. Results will be published and reported widely.

Language-Rich Inquiry Science with English Language Learners (LISELL)

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

Award Number: 
1019236
Funding Period: 
Sun, 08/15/2010 to Wed, 07/31/2013
Full Description: 

This exploratory study develops, pilot-tests, and refines a model for improving middle school English Language Learners' (ELLs) science learning. The model incorporates two pedagogical constructs (language-rich science inquiry and academic language development); and three learning settings (teacher professional development workshops, middle school science classrooms, and parent-student-teacher science workshops). The specific objectives of the study are: (1) to clarify the two pedagogical constructs and their relationships across the three learning contexts, (2) to develop and refine instruments that will be useful for the study of these constructs in these learning contexts, and (3) to conduct pilot tests of the model and instruments.

The study's development phase consists of the production, adaptation, and pilot testing of instructional strategies for teachers and learning materials for students. Instructional strategies for teachers are centered on three key inquiry practices: (a) coordinating theory and evidence, (b) controlling variables, and (c) cause and effect reasoning across 6th grade earth science, 7th grade life science, and 8th grade physical science. Learning materials for students consist of lessons in a workbook with units highlighting the study of academic language. Also, this phase of the study includes the development of resources to support parents' participation and measurement instruments to gather data during the research phase of the study.

The research phase of the study consists of pilot testing of the model. Two research questions guide the study: (1 What is the value for ELL students, their teachers and their parents of an instructional model that highlights language-rich science inquiry practices and academic language development strategies?; and (2)What is the value for ELL students, their teachers and their parents of an instructional model that is enacted in the contexts of middle school science classrooms, student-parent-teacher science workshops, and teacher professional development workshops? Assuming a quasi-experimental, pretest-posttest design, a power analysis defined a sample size of 1,000 middle school students (800 for the treatment group, and 200 for the control group) in 40 classrooms of three middle schools in the state of Georgia. A total of 12 teachers (8 science teachers and 2 English for Students of Other Languages teachers) were selected using a targeted strategy; and 40 randomly selected parents constitute the remaining population sample. The intervention consists of the use of teacher instructional strategies focused on exploring and elaborating cause-effect relationships, differentiating between evidence and theory, and identifying and controlling variables; students' use of instructional materials on academic language; and exploration of parents' science funds of knowledge. Data gathering strategies employ five instruments: (a) a teacher-focus-group interview protocol, (b) a teacher observation protocol, (c) a parent-student interview protocol, (d) a student academic language writing test, and (e) a student-constructed-response science inquiry test. Data interpretation strategies include qualitative analysis using narrative and semantic structure analysis and statistical analyses. An advisory board and an evaluator conduct the evaluation component of the study, inclusive of formative and summative aspects.

The outcome of this study is a research-informed and field-tested science instructional model focused on the improved learning of ELLs and a set of valid and reliable measuring instruments.

Chemistry Facets: Formative Assessment to Improve Student Understanding in Chemistry

This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

Partner Organization(s): 
Award Number: 
0733169
Funding Period: 
Sat, 09/15/2007 to Wed, 08/31/2011
Project Evaluator: 
Heller Research Associates
Full Description: 

Supported by research on students' preconceptions, particularly in chemistry, and the need to build on the knowledge and skills that students bring to the classroom, this project implements a facets-of-thinking perspective for the improvement of formative assessment, learning, and instruction in high school chemistry. Its goals are: to identify and develop clusters of facets (students' ideas and understandings) related to key high school chemistry concepts; to develop assessment items that diagnose facets within each cluster; to enhance the existing web-based Diagnoser assessment system for administering items, reporting results, and providing teacher resource materials for interpreting and using the assessment data; to develop teacher professional development and resource materials to support their use of facet-based approaches in chemistry; and to examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

The proposed work builds on two previously NSF-funded projects focused on designing Diagnoser (ESI-0435727) in the area of physics and on assessment development to support the transition to complex science learning (REC-0129406). The work plan is organized in three strands: (1) Assessment Development, consisting of the development and validation of facet clusters related to the Atomic Structure of Matter and Changes in Matter and the development and validation of question sets related to each facet cluster, including their administration to chemistry classes; (2) Professional Development, through which materials will be produced for a teacher workshop focused on the assessment-for-learning cycle; and (3) Technology Development, to upgrade the Diagnoser authoring system and to include chemistry facets and assessments.

Anticipated products include: (1) 8-10 validated facet clusters related to the Atomic Structure of Matter and Changes in Matter; (2) 12-20 items per facet cluster that provide diagnostic information about student understanding in relation to the facet clusters; (3) additional instructional materials related to each facet cluster, including 1-3 questions to elicit inital student ideas, a developmental lesson to encourage students' exploration of new concepts, and 3-5 prescriptive lessons to address persistent problematic ideas; and (4) a publically-available web-based Diagnoser for chemistry (www.Diagnoser.com), including student assessments and instructional materials.

Developing Contingent Pedagogies: Integrating Technology-enhanced Feedback into a Middle School Science Curriculum to Improve Conceptual Teaching and Learning

SRI International developed a formative assessment intervention that integrates classroom network technologies and contingent curriculum activities to help middle school teachers adjust instruction to improve student learning of Earth science concepts. The intervention was tested as part of a quasi-experimental study within an urban school district in Colorado that includes ethnically and economically diverse student populations. Findings indicate significant student learning gains for students in implementation classes as compared to students in comparison classes.

Lead Organization(s): 
Award Number: 
0822314
Funding Period: 
Mon, 09/01/2008 to Tue, 08/31/2010
Project Evaluator: 
Christy Kim Boscardin
Full Description: 

SRI is developing a formative assessment intervention that integrates existing classroom network technologies (GroupScribbles and Classroom Performance Systems), interactive formative assessments, and contingent curriculum activities to help teachers adjust instruction to improve middle school student learning of selected Earth science concepts (the rock cycle, forces that shape Earth's surface, and plate tectonics). To test the hypothesis that integrating response system technology, assessment, and curriculum can improve K-12 science teaching and learning, the project is developing and testing (1) pedagogical routines for teachers to follow when using classroom network technologies, (2) diagnostic questions for teachers to elicit student preconceptions, (3) decision rules for teachers to use alternative learning activities that supplement an existing geoscience curriculum, (4) training materials that prepare teachers to enact the intervention, and (5) research- and classroom-based instruments that measure changes in teacher instructional practice, student thinking, and student achievement. The intervention is being tested in two urban school districts located in two western states (Colorado and California) that have ethnically and economically diverse student populations.

Pages

Subscribe to Adaptation