Across the nation, many school districts are experiencing rapid expansion in the enrollment of multilingual learners, yet many high school teachers do not have corresponding opportunities to learn how to effectively support these students’ engagement in scientific and engineering practices. This exploratory project will address this issue by developing and testing a model of professional learning for high school teachers in which they learn how to embed the Instructional Conversation pedagogy within standards-aligned scientific and engineering practices. Under this model, high school science teachers will collaborate with high school English for Speakers of Other Languages (ESOL) teachers to co-develop linguistically sustaining instructional materials that provide students with intentionally scaffolded opportunities to use scientific dialogue as they collaborate to explain natural phenomena or design solutions through engineering.
Amy Wilson-Lopez
The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.
This study is based on a theoretical model that embeds engineering design within social, cultural, and linguistic activity, seeking to understand (a) how adolescent English learners draw from various linguistic, representational, and social resources as they work toward solving community-based engineering design challenges; (b) the problems they face in working on the challenges and how they seek to overcome those problems; and (c) adolescents' willingness to conceptualize themselves as future engineers.
High school counselors play an integral role in supporting students’ trajectories toward science, technology, engineering, and mathematics (STEM) careers. Many professional learning experiences for counselors have not focused specifically on developing awareness of a broad array of STEM careers and the corresponding high school activities and coursework that can establish students’ trajectories toward these careers. This project addresses this gap in practice by developing year-long professional learning experiences focused on engineering-related careers, with and for high school counselors.
In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths.
This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms.
This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.
In this project, high school engineering teachers will spend five weeks in a research lab devoted to biologically-inspired design, as they partner with cutting-edge engineers and scientists to study animal features and behavior and their applications to engineering designs. After this lab experience, the high school teachers will receive three six- to ten-week curricular units, tailored for tenth- through twelfth-grade students, which teach biologically-inspired design in the context of problems that are relevant to youth.