Descriptive

Building Insights through Observation: Researching Arts-based Methods for Teaching and Learning with Data

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

Lead Organization(s): 
Award Number: 
2101310
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Innovations in data collection, infrastructure, and visualization play an important role in modern society. Large, complex datasets are accessible to and shared widely with the public. However, students need to learn how to interpret and reason about visualizations of scientific data. This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively. This project focuses on visual thinking skills that have been found to apply in both science and art: describing, wondering, recognizing uncertainty, and interpreting with evidence.

The project will conduct foundational research to understand the ways in which arts-based instructional methods and geospatial data visualization can be successfully applied by science teachers. The research will examine: (1) the ways in which arts-based instructional methods can be successfully applied by STEM teachers; (2) critical elements in the process of learning and applying these techniques to influence teachers’ content, pedagogical, and technological knowledge; and (3) for which transferable data literacy skills these approaches show most promise with children. This project will use a design-based research framework to develop data literacy teaching approaches in partnership with middle school teachers. The research process will include data about teachers’ development and students’ learning about data literacy. Data to be collected include qualitative and quantitative information from teachers and students.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Felton)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101456
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Thanheiser)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101463
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Exploratory Evidence on the Factors that Relate to Elementary School Science Learning Gains Among English Language Learners

This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for English learners (ELs). The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning.

Lead Organization(s): 
Award Number: 
2100419
Funding Period: 
Sat, 05/15/2021 to Sun, 04/30/2023
Full Description: 

The nation’s schools are growing in linguistic and cultural diversity, with students identified as English learners (ELs) comprising more than ten percent of the student population. Unfortunately, existing research suggests that ELs lag behind other students in science achievement, even in the earliest grades of school. This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for ELs. The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations (inputs) such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning. Specifically, this study explores (1) a series of science inputs (time on science, content covered, availability of lab resources, and teacher training in science instruction), and (2) EL-specific inputs (classroom language use, EL instructional models, teacher certification and training, and the availability of EL support staff), in relation to ELs’ science learning outcomes from a national survey.

This study provides a comprehensive analysis of English learners’ (ELs) science learning in the early grades and the English learner instructional inputs and science instructional inputs that best predict early science outcomes (measured by both standardized science assessments and teacher-rated measures of science skills). The study uses the nationally representative Early Childhood Longitudinal Study (ECLS-K:2011) and employs a regression framework with latent class analysis to identify promising inputs that promote early science learning for ELs. Conceptually, rather than viewing the school-based inputs in isolation, the study explores how they combine to enhance students’ science learning trajectories. The study addresses the following research questions: How do science test performance trajectories vary across and within EL student groups in elementary school? How do access to school, teacher, and classroom level science and EL inputs vary across and within EL student groups in elementary school? Which school, teacher, and classroom level science and EL inputs are predictive of greater science test performance gains and teacher-rated science skills in elementary school? Are the relationships among these school, teacher, and classroom level inputs and student test performance and teacher-rated science skills different for subgroups of EL students, particularly by race/ethnicity or by immigration status? Are there particular combinations of school, teacher, and classroom level inputs that are predictive of science learning gains (test scores and teacher-rated skills) for ELs as compared to students more broadly?

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Elliott)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101667
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Building Networks and Enhancing Diversity in the K-12 STEM Teaching Workforce

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2040784
Funding Period: 
Tue, 12/01/2020 to Tue, 11/30/2021
Full Description: 

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career. Currently there is a large demographic discrepancy between students and teachers in K-12 schools. Studies have highlighted that the diverse teaching workforce benefits not only students of color but all students. Since 2017, the Smithsonian Science Education Center has conducted an annual STEM Diversity Summit, with the goal of building a coalition (built on collective impact) for attracting and retaining a diverse K-12 STEM teaching workforce, in which teams of teachers and administrators representing 83 school districts, schools, and states across the country shared their problems and developed a logic model to attract and retain a diverse K-12 STEM teaching workforce in their region with annual support from a matched mentor. This planning grant supports revisiting those former teams to better understand the dynamics of systems change through close examination of the successes and challenges outlined in their logic models with the perspective of the Cultural-Historical Activity Theory (CHAT). Under the collaborative infrastructure elements of shared vision and partnerships, this planning grant will inform and lay the foundation for a future alliance focused on diversifying the K-12 STEM teaching workforce.

In this planning grant, the Smithsonian in collaboration with Howard University, as well as in partnership with other experts in STEM teacher education, professional development, and diversityincluding from Harvard University, Rutgers University, 100kin10, National Board for Professional Teaching Standards, MA Department of Higher Education, STEM Equity Alliance, National Science Teaching Association, and private industrywill work on four primary activities. First, a survey will be developed and conducted with faculty members of Institutions of Higher Education (IHEs), including approximately 100 Minority Serving Institutions, which serve diverse populations in K-12 teacher preparation programs and STEM education across the country. The goal of the survey is to understand what roles IHEs play in organizational change management and strategic planning to diversify the K-12 STEM teaching workforce. Second, a virtual workshop will be convened to bring former STEM Diversity Summit attendees and their extended networks to reflect on their progress and activities in past years and discuss strategic long-term plans. Third, a survey with the virtual workshop participants will be conducted to better understand their practices, attitudes, and perceptions about their roles to create culturally diverse ecosystems in K-12 STEM education. Finally, all the collected information from the above activities will be used to investigate strategies and evidence-based practices of enhancing diversity in the K-12 STEM teaching workforce, and an iterative source book will be developed based on those findings as an initial resource to ground future work. Over a 12 month period, this planning grant will build a network between the former teams and with the extended partners, including the NSF INCLUDES National Network, and help them to grow as regional hubs within a Future NSF INCLUDES Alliance focused on diversifying the K-12 STEM teacher workforce, with the Smithsonian as the backbone organization.

Improving Evaluations of STEM Programs: An Empirical Investigation of Key Design Parameters

This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts, and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level.

Lead Organization(s): 
Award Number: 
2000388
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

To improve science, technology, engineering, and mathematics (STEM) outcomes in K-12 classrooms, it is critical to understand the landscape of the STEM learning environment. However, the STEM learning environment is complex. Students are nested within teachers, and teachers are nested within schools (which in turn are nested within districts), which implies a multilevel structure. To date, most empirical research that uses multilevel modeling to examine the role of higher levels on variation in student outcomes does not examine the teacher level. The reason is that for many states, data linkages between students and teachers have been difficult to achieve. However, in the last five years, this situation has improved in many states, which makes this work now possible. This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level. This work will support advances in research and evaluation methodologies that will enable researchers to design more rigorous and comprehensive evaluations of STEM interventions and improve the accuracy of statistical power calculations. Broad dissemination of the resulting tools and techniques will provide access through freely available websites, and workshops and training opportunities to build capacity in the field for STEM researchers to design cluster randomized trials (CRTs) to answer questions beyond what works to for whom and under what conditions.

This project will contribute to 1) describing and explaining the landscape of the STEM learning environment, an environment which includes students, teachers, and schools, and 2) applying this empirical information in the design of STEM intervention studies to enable researchers to extend beyond the usual questions about if the intervention works and for which types of students or schools. By adding teacher level variables, this analysis would account for key teacher characteristics that may moderate the treatment effect. The research will also increase the efficiency in the design of CRTs of STEM interventions. Specifically, the findings from this study will improve the internal validity and cost-efficiency of evaluations of STEM interventions by increasing the accuracy of estimates for the full range of parameters needed to conduct power analyses, particularly when the teacher level is included. The high cost associated with CRTs makes it critical to plan accurate trials that do not overestimate the required sample size, and hence cost more than necessary, or underestimate the sample size and thereby reduce the potential to generate high-quality evidence of program effectiveness. Including the teacher level in intervention studies, a critical level in the delivery of any intervention, will allow for more testing of teacher characteristics that may moderate intervention effects.

Online Practice Suite: Practice Spaces, Simulations and Virtual Reality Environments for Preservice Teachers to Learn to Facilitate Argumentation Discussions in Math and Science

This project will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science.

Lead Organization(s): 
Award Number: 
2037983
Funding Period: 
Sat, 08/15/2020 to Mon, 07/31/2023
Full Description: 

In teacher education it is widely acknowledged that learning to teach requires that preservice teachers have robust, authentic, and consistent opportunities to engage in the work of teaching—ideally across different contexts, with diverse student populations, and for varied purposes—as they hone their instructional practice. Practice teaching experiences in K-12 classrooms, such as field placements and student teaching, are the most widely used approaches to provide these opportunities. In an ideal world these experiences are opportunities for preservice teachers to observe and work closely with mentor teachers and try out new instructional strategies with individual, small groups, and whole classes of K-12 students. While these experiences are critical to supporting preservice teachers' learning, it can be difficult to help preservice teachers transition from university classrooms to field placements in ways that provide them with opportunities to enact ambitious instructional strategies. This need is particularly acute in mathematics and science education, where classrooms that model strong disciplinary discourse and argumentation are not always prevalent. This challenge is amplified by the COVID-19 pandemic environment; with schools and universities across the nation operating online, many preservice teachers will miss out on opportunities to practice teaching both within their courses and in K-12 classrooms. To address this urgent challenge in STEM education, project researchers will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science, a critical teaching practice in these content areas. The practice-based activities include: (1) interactive, online digital games that create targeted practice spaces to engage preservice teachers to respond to students' content-focused ideas and interactions; (2) facilitating group discussions with upper elementary or middle school student avatars in a simulated classroom using performance-based tasks; and (3) an immersive virtual reality whole-classroom environment that allows for verbal, textual and non-verbal interactions between a teacher avatar and 24 student avatars. The online practice suite, made up of these activities along with supports to help teacher educators use them effectively, represents not just an immediate remedy to the challenge of COVID-19, but a rich and flexible set of resources with the potential to support and improve teacher preparation well beyond the COVID-19 challenge.

This study will use design-based research to create this integrated system of practice teaching opportunities. This approach will involve developing and refining the individual practice activities, the integrated online practice suite, and the teacher educator support materials by working with a teacher educator community of practice and engaging up to 20 teacher educators and 400 preservice teachers in multiple rounds of tryouts and piloting during the three-year project. The project will proceed in three phases: a first phase of small-scale testing, a second phase trying the materials with teacher educators affiliated with the project team, and a third phase piloting materials with a broader group of mathematics and science teacher educators. Data sources include surveys of preservice teachers' background characteristics, perceptions of the practice activities, beliefs about content instruction, perceptions about preparedness to teach, and understanding of argumentation and discussion, videos and/or log files of their performances for each practice teaching activity, and scores on their practice teaching performances. The project team will also observe the in-class instructional activities prior to and after the use of each practice teaching activity, conduct interviews with teacher educators, and collect instructional logs from the teacher educators and instructional artifacts used to support preservice teachers' learning. Data analysis will include pre and post comparisons to examine evidence of growth in preservice math and science teachers' beliefs, perceptions, understanding, and teaching performance. The project team will also build a series of analytic memos to describe how each teacher educator used the online practice suite within the mathematics or science methods course and the factors and decisions that went into that each use case. Then, they will describe and understand how the various uses and adaptations may be linked to contextual factors within these diverse settings. Findings will be used to produce empirically and theoretically grounded design principles and heuristics for these types of practice-based activities to support teacher learning.


 Project Videos

2021 STEM for All Video Showcase

Title: Simulation and Virtual Reality Tools in Teacher Education

Presenter(s): Jamie Mikeska, Heather Howell, Pamela Lottero-Perdue, & Calli Shekell


Exploring COVID and the Effects on U.S. Education: Evidence from a National Survey of American Households

This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Award Number: 
2037179
Funding Period: 
Wed, 07/15/2020 to Wed, 06/30/2021
Full Description: 

The COVID-19 epidemic has been a tremendous disruption to the education of U.S. students and their families, and early evidence suggests that this disruption has been unequally felt across households by income and race/ethnicity. While other ongoing data collection efforts focus on understanding this disruption from the perspective of students or educators, less is known about the impact of COVID-19 on children's prek-12 educational experiences as reported by their parents, especially in STEM subjects. This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Since March of 2020, the UAS has been tracking the educational impacts of COVID-19 for a nationally representative sample of approximately 1,500 households with preK-12 children. Early results focused on quantifying the digital divide and documenting the receipt of important educational serviceslike free meals and special education servicesafter COVID-19 began. This project will support targeted administration of UAS questions to parents about students' learning experiences and engagement, overall and in STEM subjects, data analysis, and dissemination of results to key stakeholder groups. Findings will be reported overall and across key demographic groups including ethnicity, disability, urbanicity, and socioeconomic status. The grant will also support targeted research briefs addressing pressing policy questions aimed at supporting intervention strategies in states, districts, and schools moving forward. Widespread dissemination will take place through existing networks and in collaboration with other research projects focused on understanding the COVID-19 crisis. All cross-sectional and longitudinal UAS data files will be publicly available shortly after conclusion of administration so that other researchers can explore the correlates of, and outcomes associated with, COVID-19.

Learning to Teach During COVID-19: Leveraging Simulated Classrooms as Practice-based Spaces for Preservice Elementary Teachers within Online Teacher Education Courses

The COVID-19 pandemic has significantly disrupted the ability of teacher education programs to place their teacher candidates in typical K-12 teaching settings as a part of learning to teach. This project examines how simulated classroom field experiences for preservice teachers can be implemented in online and emergency remote teacher education courses.

Lead Organization(s): 
Award Number: 
2032179
Funding Period: 
Mon, 06/15/2020 to Mon, 05/31/2021
Full Description: 

School-based field experiences are a critical part of preservice teacher education. The COVID-19 pandemic has significantly disrupted the ability of teacher education programs to place their teacher candidates in typical K-12 teaching settings as a part of learning to teach. This project examines how simulated classroom field experiences for preservice teachers can be implemented in online and emergency remote teacher education courses. Elementary mathematics and science teacher educators are provided with opportunities to engage their preservice teachers in practice-based spaces using mixed-reality simulated classroom environments. These simulations are real-time lessons with animated student avatars that are voiced by an interactor who is responding to the teacher's lesson in real time in ways that represent authentic student thinking. This project aims to develop support materials for integrating simulated field experiences into elementary mathematics and science teacher education courses. The research will seek to understand what preservice teachers learn about teaching from these experiences, how teacher educators integrate the simulated field experiences into coursework, and how such simulated experiences can be integrated in remote, online courses in ways that support preservice teacher learning.

This project advances knowledge through the development and deployment of simulation-based tools that develop preservice elementary teachers' abilities to teach mathematics and science. Preservice teachers use performance tasks to deliver instruction in the simulated classroom. The project develops support materials for teacher educators to integrate this work into online and/or emergency remote teacher education courses (in response to COVID-19) in ways that support engagement in ambitious teaching practice. The project assesses impact on preservice teachers' ambitious teaching practice through artifacts of the simulated classroom practice, including observations and recordings of the simulated interactions and preservice teacher surveys and assessments of their use of ambitious teaching practices. The project evaluates the ways in which teacher educators integrate the simulated field experience into their emergency remote teacher education courses through surveys and interviews. The research addresses the immediate COVID-19 pandemic challenges in providing field experiences for students and provides long-term support for the ongoing challenge of finding field experience settings that are conducive to preparing highly-qualified elementary mathematics and science teachers.

Pages

Subscribe to Descriptive