Design & Development

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Lead Organization(s): 
Award Number: 
1812660
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

GeoHazard: Modeling Natural Hazards and Assessing Risks

This project will develop and test a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts.

Lead Organization(s): 
Award Number: 
1812362
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

As human populations grow and spread into areas where extreme natural events impact lives, there is increasing need for innovative Earth science curriculum materials that help students interpret data and and understand the factors and risks associated with natural hazards. Studying the processes underlying these naturally occurring events and the relationships between humans and their environments would enrich the standard Earth science curriculum by providing students with valuable insights about the potential impacts of extreme natural events. This project will respond to that need by developing and testing a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. Each module will be designed as a sequence of activities lasting approximately 7-10 class periods. These will be stand-alone modules so each teacher can implement just one module or several modules. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts. Students will develop scientific arguments that include risk assessment based on their understanding of real-world data and the particular Earth system being studied. The project will develop a set of computational models designed specifically to explore geoscience systems responsible for natural hazards. An open-source data analysis tool will also be modified for students to create and analyze visualizations of the magnitude, frequency, and distribution of real-world hazards and the impact of those hazards on people. Students will compare data generated from the Earth systems models with real-world data in order to develop an understanding of the cause and progression of natural hazards, as well as to make predictions and evaluate future risks.

The four-year, early stage design and development project will be conducted in two phases. In Phase 1, design-based research will be used to iteratively design and test Earth systems models. A team of five lead teachers will field test modules and provide focus group feedback during the development phase of the curricula. These lead teachers will provide input into the design and development of the tools, the organization and structure of the curriculum, and provide suggestions about classroom implementation to support the development of teacher support materials. After the models are developed, four curriculum modules related to hurricanes, earthquakes, floods, and wildfires will be developed, tested, and revised. In Phase 2, a group of 30 teachers will participate in implementation studies that will test usability of the modules across students from diverse backgrounds and feasibility of implementation across a range of classroom settings. Research will focus on understanding how to support student analysis of real-world datasets in order to improve their conceptual understanding of complex Earth systems associated with natural hazards. The project will also examine the role of uncertainty when students make scientific arguments that include predictions about the behaviors of complex systems and the uncertainties related to risk assessment. The project aims to clarify student views of uncertainty and how teachers can better support student understanding of the inherently uncertain nature of systems, models, and natural hazards, while understanding that models can be used to reduce impact. Questions guiding project research include: (1) How do students use flexible data visualizations to make sense of data and build and refine conceptual models about natural hazards? (2) How do students incorporate data from models and the real world in formulating scientific arguments; how do students use scientific uncertainty to assess risks based on their understanding of a natural hazard system; and how do students quantify and explain risks to humans and compare different sources of risks? And (3) Do GeoHazard curriculum modules help students make gains in risk-infused scientific argumentation practice and conceptual understanding underlying natural hazards? To what extent, for whom, and under what conditions is the GeoHazard curriculum useful in developing risk-infused scientific argumentation practice and conceptual understanding?

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Prospective Elementary Teachers Making for Mathematical Learning

This study takes an innovative approach to documenting how teacher knowledge can be enhanced by incorporating a design experience into pre-service mathematics education. Teachers will use digital and fabrication technologies (e.g., 3D printers and laser cutters) to design and use manipulatives for K-6 mathematics learning. The goals of the project include describing how this experience influences the prospective teachers' knowledge and identities while creating curriculum for teacher education.

Lead Organization(s): 
Award Number: 
1812887
Funding Period: 
Sat, 09/01/2018 to Mon, 08/31/2020
Full Description: 

What teachers know and believe is central to what they can do in classrooms. This study takes an innovative approach to documenting how teacher knowledge can be enhanced by incorporating a design experience into pre-service mathematics education. The study's participating prospective teachers will use digital and fabrication technologies (e.g., 3D printers and laser cutters) to design and use manipulatives for K-6 mathematics learning. The goals of the project include describing how this experience influences the prospective teachers' knowledge and identities while creating curriculum for teacher education. Also, because more schools and students have access to 3D fabrication capabilities, teacher education can utilize these capabilities to prepare teachers to take advantage of these resources. Prior research by the team demonstrated how the process of making a manipulative can support prospective teachers in learning about mathematics and how to teach elementary mathematics concepts. The project will generate resources for other elementary teacher education programs and research about how prospective elementary teachers learn mathematics for teaching.

The project includes three research questions. First, what forms of knowledge are brought to bear as prospective elementary teachers make new manipulatives and write corresponding tasks to support the teaching and learning of mathematics? Second, how does prospective elementary teachers' knowledge for teaching mathematics develop as they make new manipulatives and write tasks to support the teaching and learning of mathematics? Third, as prospective elementary teachers make new manipulatives and write tasks to support the teaching and learning of mathematics, how do they see themselves in relation to the making, the mathematics, and the mathematics teaching? The project will employ a design-based research methodology with cycles of design, enactment, analysis and redesign to create curriculum modules for teacher education focused on making mathematics manipulatives. Data collection will include video recording of class sessions, participant observation, field notes, artifacts from the participants' design of manipulatives, and assessments of mathematical knowledge for teaching. A qualitative analysis will use multiple frameworks from prior research on mathematics teacher knowledge and identity development.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Roehrig)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Award Number: 
1813342
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Dare)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Lead Organization(s): 
Award Number: 
1854801
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Ring-Whalen)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Lead Organization(s): 
Award Number: 
1812794
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Methods for Assessing Replication

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

Lead Organization(s): 
Award Number: 
1841075
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Replication of prior findings and results is a fundamental feature of science and is part of the logic supporting the claim that science is self-correcting. However, there is little prior research on the methodology for studying replication. Research involving meta-analysis and systematic reviews that summarizes a collection of research studies is more common. However, the question of whether the findings from a set of experimental studies replicate one another has received less attention. There is no clearly defined and widely accepted definition of a successful replication study or statistical literature providing methodological guidelines on how to design single replication studies or a set of replication studies. The research proposed here builds this much needed methodology.

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies. It addresses three fundamental problems. The first is how to define replication: What, precisely, should it mean to say that the results in a collection of studies replicate one another? Second, given a definition of replication, what statistical analyses should be done to decide whether the collection of studies replicate one another and what are the properties of these analyses (e.g., sensitivity or statistical power)? Third, how should one or more replication studies be designed to provide conclusive answers to questions of replication? The project has the potential for impact on a range of empirical sciences by providing statistical tools to evaluate the replicability of experimental findings, assessing the conclusiveness of replication attempts, and developing software to help plan programs of replication studies that can provide conclusive evidence of replicability of scientific findings.

Development and Validation of a Mobile, Web-based Coaching Tool to Improve PreK Classroom Practices to Enhance Learning

This project will promote pre-K teachers' use of specific teaching strategies that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project will develop a new practitioner-friendly version of the Classroom Quality Real-time Empirically-based Feedback (CQ-REF) tool for instructional coaches who work with pre-K teachers.

Lead Organization(s): 
Award Number: 
1813008
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

Children from low-income families often enter kindergarten academically behind their more economically affluent peers. Advancing pre-kindergarten (pre-K) teachers' ability to provide all students with high-quality early math learning experiences has potential to minimize this gap in school readiness. This project will promote pre-K teachers' use of specific teaching strategies, such as spending more time on math content and listening to children during instructional activities, that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project takes a novel approach--a mobile website that helps instructional coaches who work with pre-K teachers. The Classroom Quality Real-time Empirically-based Feedback tool (CQ-REF) will guide coaches' ability to observe specific teacher practices in their classrooms and then provide feedback to help teachers evaluate their practices and set goals for improvement.  Practically, the CQ-REF addresses the need for accessible, real-time feedback on high quality pre-K classroom teaching.

This project focuses on developing a new practitioner-friendly version of the CQ-REF, originally designed as a research tool for evaluating the quality of classroom teaching, for use by coaches and teachers. At the beginning of the four-year project, the team will collect examples of high-quality classroom teaching and coaching strategies. These will be used to create a library of video and other materials that teachers and coaches can use to establish a shared definition of what effective pre-K teaching looks like. In year three of the project, the team will pilot the CQ-REF with a diverse range of pre-K teachers and their coaches to determine the tool's usability and relevance. In this validation study coaches will be randomly assigned to either use the CQ-REF tool or coach in their usual manner. After one year, the CQ-REF's impact on teacher practices and student outcomes will be assessed. Outcomes of interest include teacher and student classroom behavior and children's executive function and ability in mathematics, literacy and science. Concurrently, an external evaluation team will examine how the coaching is being conducted and used, and participants' impressions of the coaching process. In the fourth and final year, the team will focus on refining the tool based on results from prior work and on disseminating the findings to research and practitioner audiences.

Pages

Subscribe to Design & Development