Projects

09/01/2022

This three-year early-stage design and development project will support a new teacher professional development and support model that builds the agency of 30 Miami-Dade County public high school science teachers to design, implement, and refine engineering instruction for their Latinx and Black students by partnering of high school teachers with Latinx and Black undergraduate engineering students in collaborative teams to co-design and implement inclusive, standards-aligned formal and informal engineering experiences. This work will generate new ways to support teachers’ roles as change agents in enacting engineering pedagogies centering those who have been historically excluded.

09/01/2022

This project will develop and test a learning progression for middle school physical science that incorporates the three dimensions identified in Next Generation of Science Standards (NGSS): the Disciplinary Core Ideas of matter, interaction, and energy; the Science and Engineering Practices of constructing explanations and developing and using models; and the Crosscutting Concepts of cause and effect and systems and system models. Bringing together all three NGSS dimensions is an innovation that allows for the project to explore the variety of learning pathways that students may follow as they apply scientific knowledge and practices to make sense of compelling phenomena or solve complex problems.

09/01/2022

In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.

09/01/2022

The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.

09/01/2022

This project examines the effect of an assessment system that automatically generates feedback based on students’ open-ended assessment responses in chemistry and physics consistent with a previously-developed learning progression that describes the successively more complex understandings students can develop about electrical interactions. The scoring system will provide individualized feedback to students and class summaries to their teachers.

09/01/2022

Familial presence in school supports children’s learning. However, few models exist that illustrate forms of familial presence in STEM learning that center familial cultural knowledge and practice. The project will produce a model for familial engagement in STEM along with instructional tools and illustrative case-studies that can be used by teachers and school districts nationally in support of increasing students’ STEM learning. This three-year study investigates new instructional practices that support rightful familial presence in STEM as a mechanism to address the continued racial and class gaps in STEM achievement for historically marginalized students.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

Three-dimensional figures can now be represented as diagrams that appear to extend into space in ways that are free of material or physical constraints. They can be rendered at any size, in any orientation, and at any position in space, and can thereby realize a far more varied set of mathematical concepts than what is possible with physical models. The goal of this project is to investigate the transformative educational potential of these representations and to generate a knowledge base that teachers, teacher educators, and researchers can use to reimagine the learning and teaching of geometry.

09/01/2022

This project aims to restructure middle school science education around Grand Challenges (GCs) such as pandemics, climate events, and diminishing biodiversity. Anchoring science education around grand challenges can motivate students learning and provide a meaningful context for science curriculum and assessment. By engaging in the units around GCs, middle school science teachers and students will have opportunities to work with real data, engage in argumentation based on evidence, and take part in solutions to the grand challenges.

09/01/2022

EarthX is a design-based research project that supports the integration of Earth science into high school biology, chemistry, and physics courses in Baltimore City Public Schools, while also supporting the district’s transition to three-dimensional (3D), ambitious and equitable science teaching aligned with the Next Generation Science Standards (NGSS). EarthX builds on the success of the Integrating Chemistry and Earth Science (ICE) DRK-12 project, which developed innovative chemistry course curriculum materials and PD strategies, to support Earth science integration into biology and physics course curriculum development and 3D teaching. EarthX will develop, test, and refine embedded and unit assessments for all three courses, along with providing an online system for assessment administration; real-time reporting to teachers and students; and provision of data to PD leaders, administrators, and researchers for multiple purposes. Assessments will be 3D, featuring core concepts from both Earth science and the course discipline combined with a science or engineering practice and a crosscutting concept.

09/01/2022

The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.

09/01/2022

The project continues and completes the development and refinement of an electronic Test of Early Numeracy (e-TEN) in English and Spanish, focused on number and operations for young learners. The assessment incorporates a learning trajectory approach that describes students' development of the understanding of numbers. The electronic assessment allows for the test to adapt to students' responses and incorporate games increasing children's engagement with the tasks.

09/01/2022

This project will explore how children in grades K-2 understand visual representations of algebraic concepts. For instance, children might create tables or graphs to organize information about the relationship between two quantities. They might use graphs and diagrams to explain their mathematical thinking and develop their understanding of relationships in numbers and operations. The project will use data gathered in K-2 classrooms and via interviews with children to describe their use of the visual representations. This exploratory project aims to develop learning trajectories as cognitive models of how children in grades K–2 understand visual representations for algebraic relationships.

08/15/2022

This project focuses on developing the Adapted Measure of Math Engagement (AM-ME), a culturally sustaining self-report measure of Black and Latina/o middle school students’ mathematics engagement. By developing a measure of mathematics engagement that centers Black and Latina/o students’ experiences, this project offers insight into creating inclusive mathematics learning environments and culturally sustaining understandings of what it means to be engaged in mathematics.

08/15/2022

This project focuses on developing the Adapted Measure of Math Engagement (AM-ME), a culturally sustaining self-report measure of Black and Latina/o middle school students’ mathematics engagement. By developing a measure of mathematics engagement that centers Black and Latina/o students’ experiences, this project offers insight into creating inclusive mathematics learning environments and culturally sustaining understandings of what it means to be engaged in mathematics.

08/15/2022

This project focuses on developing anti-racist mathematics teaching and learning practices that have led to inequitable school experiences for Black, Indigenous, and Latinx students. This study is a partnership with school and central office leaders from one district and educational researchers from three universities with expertise in both educational leadership and mathematics education. Partnership activities include documenting how leaders learn and develop anti-racist leadership practices and then measuring the impact on teachers’ instruction and students’ experiences.

08/01/2022

Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.

08/01/2022

This project explores the effectiveness of two different versions of professional development (PD) designed to enhance middle school mathematics teachers’ understanding of fractions and proportions, and their teaching of these mathematical concepts to students. The PD uses an approach that engages teachers with web-based apps that allow them to test and experiment with their mathematical ideas. The apps, combined with guiding questions that challenge teachers’ thinking about fractions and proportions, serve both to promote critical thinking about the concepts and to further developing their understandings of the concepts. The researchers will use an innovative approach, topic modeling, to examine the effectiveness of each of version of the PD.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

08/01/2022

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

08/01/2022

This project explores the effectiveness of two different versions of professional development (PD) designed to enhance middle school mathematics teachers’ understanding of fractions and proportions, and their teaching of these mathematical concepts to students. The PD uses an approach that engages teachers with web-based apps that allow them to test and experiment with their mathematical ideas. The apps, combined with guiding questions that challenge teachers’ thinking about fractions and proportions, serve both to promote critical thinking about the concepts and to further developing their understandings of the concepts. The researchers will use an innovative approach, topic modeling, to examine the effectiveness of each of version of the PD.