Projects

10/01/2012

This workshop convenes leading practitioners and scholars of innovation to collectively consider how education in the US might be reconfigured to both support and teach innovation as a core curriculum mission, with a focus on STEM education. Workshop participants identify and articulate strategies for creating and sustaining learning environments that promise the development of innovative thinking skills, behaviors and dispositions and that reward students, faculty and administrator for practicing and tuning these skills.

10/01/2012

The goal of this project is to develop and pilot test a limited number of free computer-based instructional activities that improve student graph comprehension, aimed especially at science students in grades 7 and 8. Because of growing interest in use of online resources for teaching and learning, this work is potentially transformative for a wide range of audiences, including teachers, students, researchers, and the developers and publishers of instructional materials across vSTEM areas and grades.

10/01/2012

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

10/01/2012

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

10/01/2012

This Exploratory Project is developing two prototype innovative instructional modules for grades 9-12 modules, and testing them extensively for usability and impact. These modules will emphasize the role of mathematics and computer science in planning for sustainability.

10/01/2012

The core research questions of the project are: (1) What is the nature of high-leverage student thinking that teachers have available to them in their classrooms? (2) How do teachers use student thinking during instruction and what goals, orientations and resources underlie that use? (3) What is the learning trajectory for the teaching practice of productively using student thinking? and (4) What supports can be provided to move teachers along that learning trajectory?

10/01/2012

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

10/01/2012

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

12/01/2012

In this project, researchers are working with 4th and 5th grade teachers to improve their mathematics instruction by experimenting with different ways to implement the MQI model of professional development. The professional development experiences are intentionally aligned with the Mathematical Quality of Instruction (MQI) observation instrument. This research can inform models of professional development by providing more information about various ways that the same model of professional development can be implemented.

12/15/2012

This CAREER proposal has four objectives: 1) examine the nature of mathematics teachers' learning opportunities for instructional improvement, 2) examine how work contexts influence the quality of teacher learning opportunities, 3) examine the impact of teacher learning opportunities on changes in student mathematics achievement over four years, and 4) work with district and school administrators to promote instructional improvement and student achievement by effectively providing learning opportunities to mathematics teachers.

02/15/2013

This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Researchers, in collaboration with school districts, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status.

03/01/2013

The main goal of this mathematics education research project is to determine through experimentation specific teaching strategies that can be used to support middle school students in drawing connections between mathematical representations (fractions and ratios). The potential instructional strategies were identified from the Third International Mathematics and Science Study (TIMSS) video analyses study as the ones that best distinguished high performing countries from low performing countries.

05/15/2013

This is a Faculty Early Career Development project aimed at developing, implementing, and assessing a model that introduces novice elementary school teachers to community-based engineering design as a strategy for teaching and learning in urban schools. Reflective of the new Framework for K-12 Science Education, the model addresses key crosscutting concepts, disciplinary core ideas, and scientific and engineering practices. It builds on theoretical perspectives and empirical foundations, including situated learning, engineering design cognition, and children's resources and funds of knowledge, including cultural and linguistic diversity.

05/15/2013

This project will develop and study a professional development framework that is designed to help high school geometry teachers attend more carefully to student prior knowledge, interpret the learning implications of student prior knowledge, and adjust teaching practices accordingly. Participating teachers will participate in study groups that analyze animations of productive teaching practices; they will collaborate in planning, implementing, and analyzing geometry lessons; and they will critique videos of their own classroom instruction.

05/15/2013

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

07/01/2013

This project uses learning analytics and educational data mining methods to examine how elementary students learn in an online game designed to teach fractions using the splitting model. The project uses data to examine the following questions: 1) Is splitting an effective way to learn fractions?; 2) How do students learn by splitting?; 3) Are there common pathways students follow as they learn by splitting?; and 4) Are there optimal pathways for diverse learners?

07/01/2013

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

07/01/2013

This project provides elementary teachers, grades 3-5 with a pedagogical framework and related resources for distinguishing quality science teaching. The study focuses on developing and testing a framework, the Quality Science Teaching Continuum (QSTC), to determine its capacity to serve as a potent formative and collaborative tool with which teachers can reflect on their science teaching practices and recognize student behaviors that are indicators of engagement and science learning.

07/15/2013

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

08/01/2013

This is a large-scale, cross-sectional, and longitudinal study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology.

08/01/2013

This project contributes to the small research base by exploring the validity of Technology-Enhanced Items (TEIs) in the context of elementary geometry. The project addresses three research questions: 1) To what extent are TEIs a valid measurement of geometry standards in the elementary grades?; 2) To what extent do TEIs provide an improved measurement compared to SR items?; and 3) What are the general characteristics of mathematics standards that might be better measured through TEIs?

08/01/2013

The proposed project initiates new research and an integrated education plan to address specific problems in middle school mathematics classrooms by investigating (1) how to effectively differentiate instruction for middle school students at different reasoning levels; and (2) how to foster middle school students' algebraic reasoning and rational number knowledge in mutually supportive ways.

08/01/2013

This project aims to assist in the development and study of WeInvestigate, an application that will run on a mobile device. The application will help support learners as they engage in artifact construction using multiple media while two or more learners can be synchronously collaborating either face-to-face or at a distance. WeInvestigate is leveraging the research that learning in collaboration with others associated with higher engagement and learning outcomes.

08/01/2013

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops.

08/01/2013

Technical assistance is being provided to key leaders in state education agencies (SEAs) to: 1) build SEA leaders' knowledge about effective mathematical professional development research; 2) deepen their understanding about necessary supports and structures that should be in place; and 3) enable SEA leaders to incorporate what they learn and analyze to their existing mathematics college- and career-readiness standards implementation plans.