Projects

05/15/2013

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

05/15/2013

This is a Faculty Early Career Development project aimed at developing, implementing, and assessing a model that introduces novice elementary school teachers to community-based engineering design as a strategy for teaching and learning in urban schools. Reflective of the new Framework for K-12 Science Education, the model addresses key crosscutting concepts, disciplinary core ideas, and scientific and engineering practices. It builds on theoretical perspectives and empirical foundations, including situated learning, engineering design cognition, and children's resources and funds of knowledge, including cultural and linguistic diversity.

12/15/2012

This CAREER proposal has four objectives: 1) examine the nature of mathematics teachers' learning opportunities for instructional improvement, 2) examine how work contexts influence the quality of teacher learning opportunities, 3) examine the impact of teacher learning opportunities on changes in student mathematics achievement over four years, and 4) work with district and school administrators to promote instructional improvement and student achievement by effectively providing learning opportunities to mathematics teachers.

12/01/2012

In this project, researchers are working with 4th and 5th grade teachers to improve their mathematics instruction by experimenting with different ways to implement the MQI model of professional development. The professional development experiences are intentionally aligned with the Mathematical Quality of Instruction (MQI) observation instrument. This research can inform models of professional development by providing more information about various ways that the same model of professional development can be implemented.

10/01/2012

The core research questions of the project are: (1) What is the nature of high-leverage student thinking that teachers have available to them in their classrooms? (2) How do teachers use student thinking during instruction and what goals, orientations and resources underlie that use? (3) What is the learning trajectory for the teaching practice of productively using student thinking? and (4) What supports can be provided to move teachers along that learning trajectory?

10/01/2012

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

10/01/2012

This project explores the potential of information and communications technologies (ICT) as cognitive tools for engaging students in scientific inquiry and for enhancing teacher learning. A comprehensive professional development program of over 240 hours, along with follow-up is used to determine how teachers can be supported to use ICT tools effectively in classroom instruction to create meaningful learning experiences for students, reduce the gap between formal and informal learning, and improve student learning outcomes.

10/01/2012

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

10/01/2012

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

10/01/2012

The core research questions of the project are: (1) What is the nature of high-leverage student thinking that teachers have available to them in their classrooms? (2) How do teachers use student thinking during instruction and what goals, orientations and resources underlie that use? (3) What is the learning trajectory for the teaching practice of productively using student thinking? and (4) What supports can be provided to move teachers along that learning trajectory?

10/01/2012

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

10/01/2012

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

10/01/2012

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

10/01/2012

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

10/01/2012

The core research questions of the project are: (1) What is the nature of high-leverage student thinking that teachers have available to them in their classrooms? (2) How do teachers use student thinking during instruction and what goals, orientations and resources underlie that use? (3) What is the learning trajectory for the teaching practice of productively using student thinking? and (4) What supports can be provided to move teachers along that learning trajectory?

10/01/2012

The goal of this project is to develop a provisional learning progression spanning grades K-5 that articulates and tests the potential of experiencing, describing, and representing space as the core of an integrated STEM education. The science of space has an extensive scope within and across disciplinary boundaries of science, mathematics and engineering; the project will create a coherent approach to elementary instruction in which mathematical reasoning about space is systematically cultivated.

10/01/2012

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases.

09/15/2012

This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to utilize scientific inquiry, on students' confidence in engaging in college-level material, and on students’ enrollment and persistence in college STEM majors. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists.

09/15/2012

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

09/15/2012

This project supports teachers in improving classroom discourse and reasoning by identifying key teaching strategies for building scientific concepts in successful discussions. It links these strategies together with the use of visual displays in classroom instruction with a particular emphasis on simulations. The teacher video-based workbooks that result from this study provide such a resource that is open-source and available to a larger population of teachers than just those in the project.

09/15/2012

This project is working with all teachers in grades three through five in the Portland, OR Public Schools in order to test the feasibility and efficacy of the Mathematics Studio Model of professional development. The model requires professional development to occur at the school level involving both teachers and principals. The goal of the project is to improve students' engagement and learning in mathematics by fostering effective instruction.

09/15/2012

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.

09/01/2012

This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.

09/01/2012

This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.

09/01/2012

In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.