The purpose of this 4-year project is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component and (b) hands-on activities.
Projects
This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.
This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically.
This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.
Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.
This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project will support the participation of 55 U.S. K-12 mathematics teachers or supervisors, graduate students, community college/university mathematics teachers, mathematicians, mathematics teacher educators and mathematics education researchers to attend the Thirteenth International Congress for Mathematical Education (ICME-13) to be held in Hamburg, Germany, July 24-31, 2016. The project will also prepare an educational status report (called the Fact Book) for the United States.
This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.
One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills.
This project directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum.
Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering).
This project will develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the CCSS and NGSS. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches.
This project will develop resources for teachers and administrators that will provide instructional guidance for teaching about the Ebola virus and other epidemics of infectious diseases that may arise. The resources developed will include guidelines for administrators and teachers, as well as policy briefs related to teaching and learning about Ebola.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.
This project will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners.
This project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings.
Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.
This descriptive study will systematically track key instructional indicators in middle school mathematics classrooms, specifically, teachers' mathematical knowledge, the curriculum in place, and the nature of mathematics instruction offered to students.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important math practices, followed by ongoing interactions for the math teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms.
